Поиск :
Личный кабинет :
Электронный каталог: Dima, M. - Quality Random Number Generator
Dima, M. - Quality Random Number Generator

Статья
Автор: Dima, M.
Физика элементарных частиц и атомного ядра. Письма: Quality Random Number Generator : Abstract
б.г.
ISBN отсутствует
Автор: Dima, M.
Физика элементарных частиц и атомного ядра. Письма: Quality Random Number Generator : Abstract
б.г.
ISBN отсутствует
Статья
Dima, M.
Quality Random Number Generator : Abstract / M.Dima, M.-T.Dima, S.Dima, M.Mihailescu // Физика элементарных частиц и атомного ядра. Письма. – 2025. – Т. 22, № 5. – P. 986. – URL: https://www1.jinr.ru/Pepan_letters/panl_2025_5/21_Dima_ann.pdf.
Numerous applications in physics and technology rely on random number generation: for Monte Carlo purposes, key distribution, and other tasks. Accordingly, elaborate hash functions with carefully studied and tuned algorithms have been developed, giving pseudo-random numbers. Depending on the complexity and quality of their output, they vary from very good quality (such as RANLUX with a 10&sup(171) repetition period) to fast algorithms, however of lesser period (such as the Mersenne Twister, a factor of ca. ×40 faster). We present the implementation of a true-random number “multiplier” algorithm. It relies on a finite set of true-random numbers from a physical source (in our case 0.2 million random numbers of atmospheric noise in the range of 0–9999). The algorithm produces new numbers by combining pairs of two random numbers from the list, situated at random distance apart. The random offset is calculated by a shift register structure involving both the local rand() generator and numbers from the list itself, whereby it produces “non-repetitive repetitions”, i.e., our multiplier has no known period. The tests, performed with the DieHarder test suite, show good quality
Спец.(статьи,препринты) = С 15 б - Теория информации. Случайные процессы. Стохастические уравнения
ОИЯИ = ОИЯИ (JINR)2025
Dima, M.
Quality Random Number Generator : Abstract / M.Dima, M.-T.Dima, S.Dima, M.Mihailescu // Физика элементарных частиц и атомного ядра. Письма. – 2025. – Т. 22, № 5. – P. 986. – URL: https://www1.jinr.ru/Pepan_letters/panl_2025_5/21_Dima_ann.pdf.
Numerous applications in physics and technology rely on random number generation: for Monte Carlo purposes, key distribution, and other tasks. Accordingly, elaborate hash functions with carefully studied and tuned algorithms have been developed, giving pseudo-random numbers. Depending on the complexity and quality of their output, they vary from very good quality (such as RANLUX with a 10&sup(171) repetition period) to fast algorithms, however of lesser period (such as the Mersenne Twister, a factor of ca. ×40 faster). We present the implementation of a true-random number “multiplier” algorithm. It relies on a finite set of true-random numbers from a physical source (in our case 0.2 million random numbers of atmospheric noise in the range of 0–9999). The algorithm produces new numbers by combining pairs of two random numbers from the list, situated at random distance apart. The random offset is calculated by a shift register structure involving both the local rand() generator and numbers from the list itself, whereby it produces “non-repetitive repetitions”, i.e., our multiplier has no known period. The tests, performed with the DieHarder test suite, show good quality
Спец.(статьи,препринты) = С 15 б - Теория информации. Случайные процессы. Стохастические уравнения
ОИЯИ = ОИЯИ (JINR)2025
На полку