Поиск :
Личный кабинет :
Электронный каталог: Antonov, N. V. - Field Theoretic Renormalization Group in an Infinite-Dimensional Model of Random Surface Growth i...
Antonov, N. V. - Field Theoretic Renormalization Group in an Infinite-Dimensional Model of Random Surface Growth i...

Статья
Автор: Antonov, N. V.
Journal of Statistical Physics: Field Theoretic Renormalization Group in an Infinite-Dimensional Model of Random Surface Growth i...
б.г.
ISBN отсутствует
Автор: Antonov, N. V.
Journal of Statistical Physics: Field Theoretic Renormalization Group in an Infinite-Dimensional Model of Random Surface Growth i...
б.г.
ISBN отсутствует
Статья
Antonov, N.V.
Field Theoretic Renormalization Group in an Infinite-Dimensional Model of Random Surface Growth in Random Environment / N.V.Antonov, A.A.Babakin, N.M.Gulitskiy, P.I.Kakin. – Text: electronic // Journal of Statistical Physics. – 2025. – Vol. 192, No. 2. – P. 33. – URL: https://doi.org/10.1007/s10955-025-03410-3. – Bibliogr.: 85.
The influence of a random environment on the dynamics of a fluctuating rough surface is investigated using the field theoretic renormalization group. The environment motion is modelled by the stochastic Navier–Stokes equation, which includes both a fluid in thermal equilibrium and a turbulent fluid. The surface is described by the generalized Pavlik’s stochastic equation. As a result of the renormalizability requirement, the model necessarily involves an infinite number of coupling constants. The one-loop counterterm is derived in an explicit closed form. The corresponding renormalization group equations demonstrate the existence of three two-dimensional surfaces of fixed points in the infinite-dimensional parameter space. If the surfaces contain IR attractive regions, the model allows for a large-scale, long-time scaling behaviour. For the first surface (advection is irrelevant) the critical dimensions of the height field *D&sub(h), the response field *D&sub(h') and the frequency *D&sub(*w) are non-universal through the dependence on the effective couplings. For the other two surfaces (advection is relevant) these dimensions appear to be universal and are found exactly.
ОИЯИ = ОИЯИ (JINR)2025
Спец.(статьи,препринты) = С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация$
Бюллетени = 18/025
Antonov, N.V.
Field Theoretic Renormalization Group in an Infinite-Dimensional Model of Random Surface Growth in Random Environment / N.V.Antonov, A.A.Babakin, N.M.Gulitskiy, P.I.Kakin. – Text: electronic // Journal of Statistical Physics. – 2025. – Vol. 192, No. 2. – P. 33. – URL: https://doi.org/10.1007/s10955-025-03410-3. – Bibliogr.: 85.
The influence of a random environment on the dynamics of a fluctuating rough surface is investigated using the field theoretic renormalization group. The environment motion is modelled by the stochastic Navier–Stokes equation, which includes both a fluid in thermal equilibrium and a turbulent fluid. The surface is described by the generalized Pavlik’s stochastic equation. As a result of the renormalizability requirement, the model necessarily involves an infinite number of coupling constants. The one-loop counterterm is derived in an explicit closed form. The corresponding renormalization group equations demonstrate the existence of three two-dimensional surfaces of fixed points in the infinite-dimensional parameter space. If the surfaces contain IR attractive regions, the model allows for a large-scale, long-time scaling behaviour. For the first surface (advection is irrelevant) the critical dimensions of the height field *D&sub(h), the response field *D&sub(h') and the frequency *D&sub(*w) are non-universal through the dependence on the effective couplings. For the other two surfaces (advection is relevant) these dimensions appear to be universal and are found exactly.
ОИЯИ = ОИЯИ (JINR)2025
Спец.(статьи,препринты) = С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация$
Бюллетени = 18/025