Поиск :
Личный кабинет :
Электронный каталог: Adzhemyan, L. - Chapter 35: Field-Theoretic Renormalization Group in Models of Critical Behavior, Turbulence and ...
Adzhemyan, L. - Chapter 35: Field-Theoretic Renormalization Group in Models of Critical Behavior, Turbulence and ...
Книга (аналит. описание)
Автор: Adzhemyan, L.
50 Years of the Renormalization Group: Chapter 35: Field-Theoretic Renormalization Group in Models of Critical Behavior, Turbulence and ...
б.г.
ISBN отсутствует
Автор: Adzhemyan, L.
50 Years of the Renormalization Group: Chapter 35: Field-Theoretic Renormalization Group in Models of Critical Behavior, Turbulence and ...
б.г.
ISBN отсутствует
Книга (аналит. описание)
Adzhemyan, L.
Chapter 35: Field-Theoretic Renormalization Group in Models of Critical Behavior, Turbulence and Non-Equilibrium Dynamics / L.Adzhemyan, N.Antonov, M.Hnatic, D.Kazakov, M.Kompaniets, M.Nalimov, [a.o.] // 50 Years of the Renormalization Group : Dedicated to the Memory of Michael E. Fisher [Electronic resource] / Ed.: A.Aharony, O.Entin-Wohlman, D.A.Huse, L.Radzihovsky. – Singapore [etc.] : World Scientific Publ., 2024. – P. 631-674. – URL: https://doi.org/10.1142/9789811282386_0035.
Numerous physical systems of different nature exhibit singular behavior in the vicinity of their critical points: Various thermodynamic and correlation functions acquire scaling forms with apparently universal critical exponents. The theory of phase transitions and critical phenomena is one of the most interesting areas of modern theoretical physics. The crucial breakthrough came with the application of the renormalization group and ε-expansion by K. Wilson, M. Fisher and others. Most conventional critical systems (liquid–vapour, magnets, superfluid transition) belong to the universality class of the O(n) symmetric ϕ4 model and its descendants. There, the application of the field-theoretic renormalization group allows for high-order calculations of the critical exponents within various regular schemes: 4 − ε-, 2 + ε-, 1/n- and τ-expansions with subsequent resummation of the resulting asymptotic series. Another direction of research is the application of renormalization group to more complex, dynamic and non-equilibrium systems such as growth phenomena, chemical reactions and turbulence. This chapter presents the results obtained by our informal international network (St. Petersburg, Dubna, Košice, Helsinki) and covers both directions.
ОИЯИ = ОИЯИ (JINR)2024
Спец.(статьи,препринты) = С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация$
Adzhemyan, L.
Chapter 35: Field-Theoretic Renormalization Group in Models of Critical Behavior, Turbulence and Non-Equilibrium Dynamics / L.Adzhemyan, N.Antonov, M.Hnatic, D.Kazakov, M.Kompaniets, M.Nalimov, [a.o.] // 50 Years of the Renormalization Group : Dedicated to the Memory of Michael E. Fisher [Electronic resource] / Ed.: A.Aharony, O.Entin-Wohlman, D.A.Huse, L.Radzihovsky. – Singapore [etc.] : World Scientific Publ., 2024. – P. 631-674. – URL: https://doi.org/10.1142/9789811282386_0035.
Numerous physical systems of different nature exhibit singular behavior in the vicinity of their critical points: Various thermodynamic and correlation functions acquire scaling forms with apparently universal critical exponents. The theory of phase transitions and critical phenomena is one of the most interesting areas of modern theoretical physics. The crucial breakthrough came with the application of the renormalization group and ε-expansion by K. Wilson, M. Fisher and others. Most conventional critical systems (liquid–vapour, magnets, superfluid transition) belong to the universality class of the O(n) symmetric ϕ4 model and its descendants. There, the application of the field-theoretic renormalization group allows for high-order calculations of the critical exponents within various regular schemes: 4 − ε-, 2 + ε-, 1/n- and τ-expansions with subsequent resummation of the resulting asymptotic series. Another direction of research is the application of renormalization group to more complex, dynamic and non-equilibrium systems such as growth phenomena, chemical reactions and turbulence. This chapter presents the results obtained by our informal international network (St. Petersburg, Dubna, Košice, Helsinki) and covers both directions.
ОИЯИ = ОИЯИ (JINR)2024
Спец.(статьи,препринты) = С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация$