Поиск :
Личный кабинет :
Электронный каталог: Kharuk, I. - Machine Learning in Baikal-GVD Experiment
Kharuk, I. - Machine Learning in Baikal-GVD Experiment
Книга (аналит. описание)
Автор: Kharuk, I.
38th International Cosmic Ray Conference (ICRC2023), Nagoya, Japan, 26 July - 3 August, 2023 [Electronic resource]: Machine Learning in Baikal-GVD Experiment
б.г.
ISBN отсутствует
Автор: Kharuk, I.
38th International Cosmic Ray Conference (ICRC2023), Nagoya, Japan, 26 July - 3 August, 2023 [Electronic resource]: Machine Learning in Baikal-GVD Experiment
б.г.
ISBN отсутствует
Книга (аналит. описание)
Kharuk, I.
Machine Learning in Baikal-GVD Experiment / I.Kharuk, G.Safronov, A.Matseiko, A.Leonov // 38th International Cosmic Ray Conference (ICRC2023), Nagoya, Japan, 26 July - 3 August, 2023 [Electronic resource]. – Trieste : SISSA, 2024. – P. 1077. – URL: https://doi.org/10.22323/1.444.1077. – Bibliogr.: 15.
Baikal-GVD is a large-volume underwater neutrino telescope located in Lake Baikal, Russia. We report on machine learning techniques used for the analysis of its data. Namely, we discuss neural networks developed for the following goals: (1) suppression of noise activations of Baikal-GVD's optical modules due to the natural luminescence of Baikal water; (2) identification of neutrino-induced events and estimation of their flux; (3) reconstruction of arrival direction of incoming neutrinos. It is shown that the accuracy of developed methods surpass that of analogous standard reconstruction techniques on Monte-Carlo simulated data. – (Proceedings of Science ; Vol. 444) .
ОИЯИ = ОИЯИ (JINR)2024
Спец.(статьи,препринты) = С 346.1 - Нейтрино
Спец.(статьи,препринты) = С 344.1х - Методы регистрации нейтрино
Спец.(статьи,препринты) = Ц 849 - Искусственный интеллект. Теория и практика
Спец.(статьи,препринты) = С 344.1ш - Методы обработки результатов измерений
Kharuk, I.
Machine Learning in Baikal-GVD Experiment / I.Kharuk, G.Safronov, A.Matseiko, A.Leonov // 38th International Cosmic Ray Conference (ICRC2023), Nagoya, Japan, 26 July - 3 August, 2023 [Electronic resource]. – Trieste : SISSA, 2024. – P. 1077. – URL: https://doi.org/10.22323/1.444.1077. – Bibliogr.: 15.
Baikal-GVD is a large-volume underwater neutrino telescope located in Lake Baikal, Russia. We report on machine learning techniques used for the analysis of its data. Namely, we discuss neural networks developed for the following goals: (1) suppression of noise activations of Baikal-GVD's optical modules due to the natural luminescence of Baikal water; (2) identification of neutrino-induced events and estimation of their flux; (3) reconstruction of arrival direction of incoming neutrinos. It is shown that the accuracy of developed methods surpass that of analogous standard reconstruction techniques on Monte-Carlo simulated data. – (Proceedings of Science ; Vol. 444) .
ОИЯИ = ОИЯИ (JINR)2024
Спец.(статьи,препринты) = С 346.1 - Нейтрино
Спец.(статьи,препринты) = С 344.1х - Методы регистрации нейтрино
Спец.(статьи,препринты) = Ц 849 - Искусственный интеллект. Теория и практика
Спец.(статьи,препринты) = С 344.1ш - Методы обработки результатов измерений