Поиск :
Личный кабинет :
Электронный каталог: Ivanov, E. - N = 2 AdS Hypermultiplets in Harmonic Superspace
Ivanov, E. - N = 2 AdS Hypermultiplets in Harmonic Superspace

Статья
Автор: Ivanov, E.
Physics Letters B: N = 2 AdS Hypermultiplets in Harmonic Superspace
б.г.
ISBN отсутствует
Автор: Ivanov, E.
Physics Letters B: N = 2 AdS Hypermultiplets in Harmonic Superspace
б.г.
ISBN отсутствует
Статья
Ivanov, E.
N = 2 AdS Hypermultiplets in Harmonic Superspace / E.Ivanov, N.Zaigraev. – Text : electronic // Physics Letters B. – 2025. – Vol. 871. – P. 139964. – URL: https://doi.org/10.1016/j.physletb.2025.139964. – Bibliogr.: 45.
We present the harmonic superspace formulation of N = 2 hypermultiplet in AdS&sub(4) background, starting from the proper realization of 4𝐷, n = 2 superconformal group 𝑆𝑈(2, 2|2) on the analytic subspace coordinates. The key observation is that N = 2 AdS&sub(4) supergroup 𝑂𝑆𝑝(2|4) can be embedded as a subgroup in the superconformal group through introducing a constant symmetric matrix 𝑐&sup((𝑖𝑗)) and identifying the AdS supercharge as *Q&sup(𝑖)&sub(*a) = 𝑄&sup(𝑖)&sub(𝛼) + 𝑐&sup(𝑖𝑘)𝑆&sub(𝑘𝛼) , with 𝑄 and 𝑆 being generators of the standard and conformal 4𝐷, N = 2 supersymmetries. Respectively, the AdS cosmological constant is given by the square of 𝑐&sup((𝑖𝑗)) , *L = −12𝑐 &sup(𝑖𝑗) 𝑐&sub(𝑖𝑗). We construct the 𝑂𝑆𝑝(2|4) invariant hypermultiplet mass term by adding, to the coordinate AdS transformations, a piece realized as an extra 𝑆𝑂(2) rotation of the hypermultiplet superfield. It is analogous to the central charge 𝑥&sup(5) transformation of flat N = 2 supersymmetry and turns into the latter in the super Minkowski limit. As another new result, we explicitly construct the superfield Weyl transformation to the 𝑂𝑆𝑝(2|4) invariant AdS integration measure over the analytic superspace, which provides, in particular, a basis for unconstrained superfield formulations of the AdS&sub(4) -deformed N = 2 hyper Kähler sigma models. We find the proper redefinition of 𝜃 coordinates ensuring the AdS-covariant form of the analytic superfield component expansions.
Спец.(статьи,препринты) = С 324.1е - Суперсимметричные теории. Супергравитация. Суперструны$
ОИЯИ = ОИЯИ (JINR)2025
Бюллетени = 11/026
Ivanov, E.
N = 2 AdS Hypermultiplets in Harmonic Superspace / E.Ivanov, N.Zaigraev. – Text : electronic // Physics Letters B. – 2025. – Vol. 871. – P. 139964. – URL: https://doi.org/10.1016/j.physletb.2025.139964. – Bibliogr.: 45.
We present the harmonic superspace formulation of N = 2 hypermultiplet in AdS&sub(4) background, starting from the proper realization of 4𝐷, n = 2 superconformal group 𝑆𝑈(2, 2|2) on the analytic subspace coordinates. The key observation is that N = 2 AdS&sub(4) supergroup 𝑂𝑆𝑝(2|4) can be embedded as a subgroup in the superconformal group through introducing a constant symmetric matrix 𝑐&sup((𝑖𝑗)) and identifying the AdS supercharge as *Q&sup(𝑖)&sub(*a) = 𝑄&sup(𝑖)&sub(𝛼) + 𝑐&sup(𝑖𝑘)𝑆&sub(𝑘𝛼) , with 𝑄 and 𝑆 being generators of the standard and conformal 4𝐷, N = 2 supersymmetries. Respectively, the AdS cosmological constant is given by the square of 𝑐&sup((𝑖𝑗)) , *L = −12𝑐 &sup(𝑖𝑗) 𝑐&sub(𝑖𝑗). We construct the 𝑂𝑆𝑝(2|4) invariant hypermultiplet mass term by adding, to the coordinate AdS transformations, a piece realized as an extra 𝑆𝑂(2) rotation of the hypermultiplet superfield. It is analogous to the central charge 𝑥&sup(5) transformation of flat N = 2 supersymmetry and turns into the latter in the super Minkowski limit. As another new result, we explicitly construct the superfield Weyl transformation to the 𝑂𝑆𝑝(2|4) invariant AdS integration measure over the analytic superspace, which provides, in particular, a basis for unconstrained superfield formulations of the AdS&sub(4) -deformed N = 2 hyper Kähler sigma models. We find the proper redefinition of 𝜃 coordinates ensuring the AdS-covariant form of the analytic superfield component expansions.
Спец.(статьи,препринты) = С 324.1е - Суперсимметричные теории. Супергравитация. Суперструны$
ОИЯИ = ОИЯИ (JINR)2025
Бюллетени = 11/026
На полку