Поиск :
Личный кабинет :
Электронный каталог: Esawii, H. A. - A Molecular Dynamics Investigation into Optimum Membrane-Cholesterol Performance Influencing Alzh...
Esawii, H. A. - A Molecular Dynamics Investigation into Optimum Membrane-Cholesterol Performance Influencing Alzh...

Статья
Автор: Esawii, H. A.
Advanced Theory and Simulations: A Molecular Dynamics Investigation into Optimum Membrane-Cholesterol Performance Influencing Alzh...
б.г.
ISBN отсутствует
Автор: Esawii, H. A.
Advanced Theory and Simulations: A Molecular Dynamics Investigation into Optimum Membrane-Cholesterol Performance Influencing Alzh...
б.г.
ISBN отсутствует
Статья
Esawii, H.A.
A Molecular Dynamics Investigation into Optimum Membrane-Cholesterol Performance Influencing Alzheimer's-Related Amyloid-*b Conformational Stability / H.A.Esawii, Y.Arynbek, N.Mohamed, G.Arzumanyan, H.A.Mahran. – Text : electronic // Advanced Theory and Simulations. – 2025. – Vol. 8, No. 9. – P. 2500180. – URL: https://doi.org/10.1002/adts.202500180. – Bibliogr.: 47.
Alzheimer's disease (AD) is associated with the aggregation of amyloid beta (Aβ) peptides, which disrupt membrane integrity and contribute to neurodegeneration. Cholesterol, a key membrane component, plays a role in modulating these pathological events by stabilizing membrane structure and affecting protein dynamics. This study investigates how cholesterol influences membrane stability in the presence of Aβ1-42, a peptide linked to AD progression. Molecular dynamics (MD) simulations are used to model a dipalmitoylphosphatidylcholine (DPPC) lipid bilayer with cholesterol concentrations ranging from 10–50%. Aβ1-42 is modeled to examine its interaction with these cholesterol-rich membranes. Key parameters, including root mean square deviation (RMSD) for structural stability, root mean square fluctuation (RMSF) for local flexibility, and hydrogen bonding (H-bonding) are calculated to assess interactions between Aβ1-42 and the lipid bilayer. Secondary structure analysis (SSA) tracked conformational changes in Aβ1-42, focusing on transitions between alpha helices and beta sheets, which are critical for understanding peptide misfolding. Results of this study indicate that approximately (≈) 30% cholesterol concentration is optimal for enhancing peptide stability. While higher cholesterol (50%) further stabilizes the membrane, it leads to diminishing returns on peptide stability, possibly due to excessive membrane rigidity. These findings suggest that a balance between membrane rigidity and peptide flexibility is crucial for maintaining structural stability in AD.
ОИЯИ = ОИЯИ (JINR)2025
Спец.(статьи,препринты) = 28.0 - Биология$
Спец.(статьи,препринты) = С 44 б - Разделение химических элементов экстракционными и ионообменными методами
Спец.(статьи,препринты) = С 17 к - Расчеты по молекулярной динамике. Численное моделирование физических задач
Бюллетени = 7/026
Esawii, H.A.
A Molecular Dynamics Investigation into Optimum Membrane-Cholesterol Performance Influencing Alzheimer's-Related Amyloid-*b Conformational Stability / H.A.Esawii, Y.Arynbek, N.Mohamed, G.Arzumanyan, H.A.Mahran. – Text : electronic // Advanced Theory and Simulations. – 2025. – Vol. 8, No. 9. – P. 2500180. – URL: https://doi.org/10.1002/adts.202500180. – Bibliogr.: 47.
Alzheimer's disease (AD) is associated with the aggregation of amyloid beta (Aβ) peptides, which disrupt membrane integrity and contribute to neurodegeneration. Cholesterol, a key membrane component, plays a role in modulating these pathological events by stabilizing membrane structure and affecting protein dynamics. This study investigates how cholesterol influences membrane stability in the presence of Aβ1-42, a peptide linked to AD progression. Molecular dynamics (MD) simulations are used to model a dipalmitoylphosphatidylcholine (DPPC) lipid bilayer with cholesterol concentrations ranging from 10–50%. Aβ1-42 is modeled to examine its interaction with these cholesterol-rich membranes. Key parameters, including root mean square deviation (RMSD) for structural stability, root mean square fluctuation (RMSF) for local flexibility, and hydrogen bonding (H-bonding) are calculated to assess interactions between Aβ1-42 and the lipid bilayer. Secondary structure analysis (SSA) tracked conformational changes in Aβ1-42, focusing on transitions between alpha helices and beta sheets, which are critical for understanding peptide misfolding. Results of this study indicate that approximately (≈) 30% cholesterol concentration is optimal for enhancing peptide stability. While higher cholesterol (50%) further stabilizes the membrane, it leads to diminishing returns on peptide stability, possibly due to excessive membrane rigidity. These findings suggest that a balance between membrane rigidity and peptide flexibility is crucial for maintaining structural stability in AD.
ОИЯИ = ОИЯИ (JINR)2025
Спец.(статьи,препринты) = 28.0 - Биология$
Спец.(статьи,препринты) = С 44 б - Разделение химических элементов экстракционными и ионообменными методами
Спец.(статьи,препринты) = С 17 к - Расчеты по молекулярной динамике. Численное моделирование физических задач
Бюллетени = 7/026
На полку