Поиск :
Личный кабинет :
Электронный каталог: Antonov, N. V. - Kinetic Roughening in Turbulent Environment: Spatially Quenched Kardar–Parisi–Zhang Model and Nav...
Antonov, N. V. - Kinetic Roughening in Turbulent Environment: Spatially Quenched Kardar–Parisi–Zhang Model and Nav...

Статья
Автор: Antonov, N. V.
Физика элементарных частиц и атомного ядра: Kinetic Roughening in Turbulent Environment: Spatially Quenched Kardar–Parisi–Zhang Model and Nav... : Abstract
б.г.
ISBN отсутствует
Автор: Antonov, N. V.
Физика элементарных частиц и атомного ядра: Kinetic Roughening in Turbulent Environment: Spatially Quenched Kardar–Parisi–Zhang Model and Nav... : Abstract
б.г.
ISBN отсутствует
Статья
Antonov, N.V.
Kinetic Roughening in Turbulent Environment: Spatially Quenched Kardar–Parisi–Zhang Model and Navier–Stokes Equation : Abstract / N.V.Antonov, N.M.Gulitskiy, P.I.Kakin, M.A.Reiter // Физика элементарных частиц и атомного ядра : пер. с англ. – 2025. – Т. 56, № 6. – P. 1932-1933. – URL: https://www1.jinr.ru/Pepan/v-56-6/Gulitskiy.pdf.
Using field-theoretic renormalization group analysis, we study the Kardar– Parisi–Zhang equation of random surface growth with a spatially quenched random noise taking into account turbulent environment described by the Navier–Stokes equation. The latter is taken in the form that allows us to model both macroscopic shaking of the fluid and fully turbulent flow. After establishing multiplicative renormalizability of the constructed action functional with additional non-linearity, we perform one-loop calculations (to the leading order in ε = 4 − d and y, where d is the space dimension) and find three sets of renormalization group equations’ fixed points: Gaussian fixed point (regime of ordinary diffusion), a curve of fixed points (macroscopic shaking) with infrared attractive segment, and a surface of fixed points for a special case *e = y that also involves an infrared attractive area. We also investigate marginal values of the coupling constants to look for “hidden” fixed points.
Спец.(статьи,препринты) = С 17 к - Расчеты по молекулярной динамике. Численное моделирование физических задач
Спец.(статьи,препринты) = С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация$
ОИЯИ = ОИЯИ (JINR)2025
Antonov, N.V.
Kinetic Roughening in Turbulent Environment: Spatially Quenched Kardar–Parisi–Zhang Model and Navier–Stokes Equation : Abstract / N.V.Antonov, N.M.Gulitskiy, P.I.Kakin, M.A.Reiter // Физика элементарных частиц и атомного ядра : пер. с англ. – 2025. – Т. 56, № 6. – P. 1932-1933. – URL: https://www1.jinr.ru/Pepan/v-56-6/Gulitskiy.pdf.
Using field-theoretic renormalization group analysis, we study the Kardar– Parisi–Zhang equation of random surface growth with a spatially quenched random noise taking into account turbulent environment described by the Navier–Stokes equation. The latter is taken in the form that allows us to model both macroscopic shaking of the fluid and fully turbulent flow. After establishing multiplicative renormalizability of the constructed action functional with additional non-linearity, we perform one-loop calculations (to the leading order in ε = 4 − d and y, where d is the space dimension) and find three sets of renormalization group equations’ fixed points: Gaussian fixed point (regime of ordinary diffusion), a curve of fixed points (macroscopic shaking) with infrared attractive segment, and a surface of fixed points for a special case *e = y that also involves an infrared attractive area. We also investigate marginal values of the coupling constants to look for “hidden” fixed points.
Спец.(статьи,препринты) = С 17 к - Расчеты по молекулярной динамике. Численное моделирование физических задач
Спец.(статьи,препринты) = С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация$
ОИЯИ = ОИЯИ (JINR)2025
На полку