Поиск :
Личный кабинет :
Электронный каталог: Song, Q.-T. - Gravitational Form Factors in the Perturbative Limit
Song, Q.-T. - Gravitational Form Factors in the Perturbative Limit

Статья
Автор: Song, Q.-T.
Physics Letters B: Gravitational Form Factors in the Perturbative Limit
б.г.
ISBN отсутствует
Автор: Song, Q.-T.
Physics Letters B: Gravitational Form Factors in the Perturbative Limit
б.г.
ISBN отсутствует
Статья
Song, Q.-T.
Gravitational Form Factors in the Perturbative Limit / Q.-T.Song, O.V.Teryaev, S.Yoshida. – Text : electronic // Physics Letters B. – 2025. – Vol. 868. – P. 139797. – URL: https://doi.org/10.1016/j.physletb.2025.139797. – Bibliogr.:.
Generalized distribution amplitudes (GDAs) have attracted significant attention in recent years due to their connection with the energy-momentum tensor (EMT) form factors (FFs). The GDAs can be experimentally accessed through the study of amplitudes in *g&sup(∗ )*g *> 𝑀&sub(1)𝑀&sub(2) and *g&sup(∗ ) *> 𝑀&sub(1)𝑀&sub(2)) *g, where 𝑀&sub(1)𝑀&sub(2) is a pseudoscalar meson pair such as *n*h and *h*h′. In this work, we calculate these amplitudes in the perturbative limit and express the extracted 𝑀&sub(1)𝑀&sub(2) GDAs in terms of meson distribution amplitudes that have been constrained by the previous experiments. Our explicit calculation verifies the existence of a new EMT FF that violates the conservation law of EMT when the hadronic matrix element of the EMT operator is considered separately for each quark flavor. In addition, our result shows that the 𝑀&sub(1)𝑀&sub(2) GDAs are identical in *g&sup(∗ ) *g *> 𝑀&sub(1)𝑀&sub(2) and *g&sup(∗ ) *> 𝑀&sub(1)𝑀&sub(2)*g, which confirms the universality of GDAs in the perturbative limit. In the future, the GDAs and the EMT FFs studied in this paper can be probed at Belle II. Our study enhances the accessibility to the 𝑃 -wave GDAs in *g&sup(∗ )*g *> 𝑀&sub(1)𝑀&sub(2) and /g&sup(∗ ) *> 𝑀&sub(1)𝑀&sub(2)*g, and provides a promising approach for searching for exotic hybrid mesons in future experiments.
Спец.(статьи,препринты) = С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация$
ОИЯИ = ОИЯИ (JINR)2025
Song, Q.-T.
Gravitational Form Factors in the Perturbative Limit / Q.-T.Song, O.V.Teryaev, S.Yoshida. – Text : electronic // Physics Letters B. – 2025. – Vol. 868. – P. 139797. – URL: https://doi.org/10.1016/j.physletb.2025.139797. – Bibliogr.:.
Generalized distribution amplitudes (GDAs) have attracted significant attention in recent years due to their connection with the energy-momentum tensor (EMT) form factors (FFs). The GDAs can be experimentally accessed through the study of amplitudes in *g&sup(∗ )*g *> 𝑀&sub(1)𝑀&sub(2) and *g&sup(∗ ) *> 𝑀&sub(1)𝑀&sub(2)) *g, where 𝑀&sub(1)𝑀&sub(2) is a pseudoscalar meson pair such as *n*h and *h*h′. In this work, we calculate these amplitudes in the perturbative limit and express the extracted 𝑀&sub(1)𝑀&sub(2) GDAs in terms of meson distribution amplitudes that have been constrained by the previous experiments. Our explicit calculation verifies the existence of a new EMT FF that violates the conservation law of EMT when the hadronic matrix element of the EMT operator is considered separately for each quark flavor. In addition, our result shows that the 𝑀&sub(1)𝑀&sub(2) GDAs are identical in *g&sup(∗ ) *g *> 𝑀&sub(1)𝑀&sub(2) and *g&sup(∗ ) *> 𝑀&sub(1)𝑀&sub(2)*g, which confirms the universality of GDAs in the perturbative limit. In the future, the GDAs and the EMT FFs studied in this paper can be probed at Belle II. Our study enhances the accessibility to the 𝑃 -wave GDAs in *g&sup(∗ )*g *> 𝑀&sub(1)𝑀&sub(2) and /g&sup(∗ ) *> 𝑀&sub(1)𝑀&sub(2)*g, and provides a promising approach for searching for exotic hybrid mesons in future experiments.
Спец.(статьи,препринты) = С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация$
ОИЯИ = ОИЯИ (JINR)2025