Поиск :
Личный кабинет :
Электронный каталог: Yukalov, V. I. - Self-Similar Renormalization for Nonlinear Problems
Yukalov, V. I. - Self-Similar Renormalization for Nonlinear Problems

Статья
Автор: Yukalov, V. I.
Физика элементарных частиц и атомного ядра. Письма: Self-Similar Renormalization for Nonlinear Problems : Abstract
б.г.
ISBN отсутствует
Автор: Yukalov, V. I.
Физика элементарных частиц и атомного ядра. Письма: Self-Similar Renormalization for Nonlinear Problems : Abstract
б.г.
ISBN отсутствует
Статья
Yukalov, V.I.
Self-Similar Renormalization for Nonlinear Problems : Abstract / V.I.Yukalov, E.P.Yukalova // Физика элементарных частиц и атомного ядра. Письма. – 2025. – Т. 22, № 3. – C. 436. – URL: http://www1.jinr.ru/Pepan_letters/panl_2025_3/15_Yukalov_ann.pdf.
A new method, called the method of self-similar approximants, and its recent developments are described. The method is based on the ideas of renormalization group theory and optimal control theory. It allows for the effective extrapolation of asymptotic series in powers of small variables to the finite and even to the infinite variables. The approach is proved to be regular. It is illustrated by several examples demonstrating good agreement with numerical calculations. The method is shown to provide accurate approximate solutions to complex nonlinear problems. In some cases, the method allows for the reconstruction of exact solutions on the basis of rather short perturbative series
Спец.(статьи,препринты) = С 326.3 - Ферми-системы. Спиновые системы
ОИЯИ = ОИЯИ (JINR)2025
Yukalov, V.I.
Self-Similar Renormalization for Nonlinear Problems : Abstract / V.I.Yukalov, E.P.Yukalova // Физика элементарных частиц и атомного ядра. Письма. – 2025. – Т. 22, № 3. – C. 436. – URL: http://www1.jinr.ru/Pepan_letters/panl_2025_3/15_Yukalov_ann.pdf.
A new method, called the method of self-similar approximants, and its recent developments are described. The method is based on the ideas of renormalization group theory and optimal control theory. It allows for the effective extrapolation of asymptotic series in powers of small variables to the finite and even to the infinite variables. The approach is proved to be regular. It is illustrated by several examples demonstrating good agreement with numerical calculations. The method is shown to provide accurate approximate solutions to complex nonlinear problems. In some cases, the method allows for the reconstruction of exact solutions on the basis of rather short perturbative series
Спец.(статьи,препринты) = С 326.3 - Ферми-системы. Спиновые системы
ОИЯИ = ОИЯИ (JINR)2025