Поиск :
Личный кабинет :
Электронный каталог: Hnatic, M. - Renormalization Group Analysis of Two-Species Reaction-Diffusion System: Crossover between Long-R...
Hnatic, M. - Renormalization Group Analysis of Two-Species Reaction-Diffusion System: Crossover between Long-R...

Статья
Автор: Hnatic, M.
Физика элементарных частиц и атомного ядра. Письма: Renormalization Group Analysis of Two-Species Reaction-Diffusion System: Crossover between Long-R... : Abstract
б.г.
ISBN отсутствует
Автор: Hnatic, M.
Физика элементарных частиц и атомного ядра. Письма: Renormalization Group Analysis of Two-Species Reaction-Diffusion System: Crossover between Long-R... : Abstract
б.г.
ISBN отсутствует
Статья
Hnatic, M.
Renormalization Group Analysis of Two-Species Reaction-Diffusion System: Crossover between Long-Range and Short-Range Spreading : Abstract / M.Hnatic, M.Kecer, T.Lucivjansky // Физика элементарных частиц и атомного ядра. Письма. – 2025. – Т. 22, № 3. – C. 410. – URL: http://www1.jinr.ru/Pepan_letters/panl_2025_3/08_Hnatic_ann.pdf.
We focus on two-species reaction-diffusion system involving two reaction processes A + A *> (*y, A) and A + B *> A. Reactants are subject to diffusive spreading with arbitrary diffusion constants. Such a system was studied earlier at and below its upper critical dimension d&sub(c) = 2 and recently also in the presence of long-range spreading with fractional Laplace operator *d*g ≡ *d2(1−*a) . In the latter case, however, only long-range limit was explored (*a >> *e), where *e = d&sub(c) − d = 2 − d. Our aim is to investigate the hybrid regime in which parameters *a and *e are of the same order, i.e., *a = O(*e). Our primary theoretical tool is field-theoretic perturbative renormalization group augmented with the approach of Honkonen and Nalimov. The model is renormalized to all orders of perturbation theory, stable long-time asymptotic regimes are identified and time-decay exponent of respective particle densities is calculated.
Спец.(статьи,препринты) = С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация$
ОИЯИ = ОИЯИ (JINR)2025
Hnatic, M.
Renormalization Group Analysis of Two-Species Reaction-Diffusion System: Crossover between Long-Range and Short-Range Spreading : Abstract / M.Hnatic, M.Kecer, T.Lucivjansky // Физика элементарных частиц и атомного ядра. Письма. – 2025. – Т. 22, № 3. – C. 410. – URL: http://www1.jinr.ru/Pepan_letters/panl_2025_3/08_Hnatic_ann.pdf.
We focus on two-species reaction-diffusion system involving two reaction processes A + A *> (*y, A) and A + B *> A. Reactants are subject to diffusive spreading with arbitrary diffusion constants. Such a system was studied earlier at and below its upper critical dimension d&sub(c) = 2 and recently also in the presence of long-range spreading with fractional Laplace operator *d*g ≡ *d2(1−*a) . In the latter case, however, only long-range limit was explored (*a >> *e), where *e = d&sub(c) − d = 2 − d. Our aim is to investigate the hybrid regime in which parameters *a and *e are of the same order, i.e., *a = O(*e). Our primary theoretical tool is field-theoretic perturbative renormalization group augmented with the approach of Honkonen and Nalimov. The model is renormalized to all orders of perturbation theory, stable long-time asymptotic regimes are identified and time-decay exponent of respective particle densities is calculated.
Спец.(статьи,препринты) = С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация$
ОИЯИ = ОИЯИ (JINR)2025