Поиск :
Личный кабинет :
Электронный каталог: Tyurin, N. - On the Lagrangian Embedding of U(n) in the Grassmannian Gr(n - 1, 2n - 1)
Tyurin, N. - On the Lagrangian Embedding of U(n) in the Grassmannian Gr(n - 1, 2n - 1)

Статья
Автор: Tyurin, N.
Russian Journal of Mathematical Physics: On the Lagrangian Embedding of U(n) in the Grassmannian Gr(n - 1, 2n - 1)
б.г.
ISBN отсутствует
Автор: Tyurin, N.
Russian Journal of Mathematical Physics: On the Lagrangian Embedding of U(n) in the Grassmannian Gr(n - 1, 2n - 1)
б.г.
ISBN отсутствует
Статья
Tyurin, N.
On the Lagrangian Embedding of U(n) in the Grassmannian Gr(n - 1, 2n - 1) / N.Tyurin. – Text : electronic // Russian Journal of Mathematical Physics. – 2025. – Т. 32, No. 1. – P. 210-218. – URL: https://doi.org/10.1134/S1061920824601770. – Bibliogr.: 5.
In the present paper we combine our previous results in the studies of Lagrangian geometry of the Grassmannian Gr(k, n) with the example of Lagrangian embedding of the full flag variety in the direct product of projective spaces, found by D. Bykov. As the result, we construct a Langrangian immersion of the group U(n), as a submanifold, into the complex Grassmanian Gr(n − 1, 2n − 1) equipped with the symplectic form, by the Pl¨ucker embedding.
ОИЯИ = ОИЯИ (JINR)2025
Спец.(статьи,препринты) = С 138 - Геометрия. Риманова геометрия. Геометрия Лобачевского
Бюллетени = 30/025
Tyurin, N.
On the Lagrangian Embedding of U(n) in the Grassmannian Gr(n - 1, 2n - 1) / N.Tyurin. – Text : electronic // Russian Journal of Mathematical Physics. – 2025. – Т. 32, No. 1. – P. 210-218. – URL: https://doi.org/10.1134/S1061920824601770. – Bibliogr.: 5.
In the present paper we combine our previous results in the studies of Lagrangian geometry of the Grassmannian Gr(k, n) with the example of Lagrangian embedding of the full flag variety in the direct product of projective spaces, found by D. Bykov. As the result, we construct a Langrangian immersion of the group U(n), as a submanifold, into the complex Grassmanian Gr(n − 1, 2n − 1) equipped with the symplectic form, by the Pl¨ucker embedding.
ОИЯИ = ОИЯИ (JINR)2025
Спец.(статьи,препринты) = С 138 - Геометрия. Риманова геометрия. Геометрия Лобачевского
Бюллетени = 30/025