Поиск :
Личный кабинет :
Электронный каталог: Ayryan, E. - Approximate Calculation of Functional Integrals Arising from the Operator Approach
Ayryan, E. - Approximate Calculation of Functional Integrals Arising from the Operator Approach

Статья
Автор: Ayryan, E.
Physica A: Approximate Calculation of Functional Integrals Arising from the Operator Approach
б.г.
ISBN отсутствует
Автор: Ayryan, E.
Physica A: Approximate Calculation of Functional Integrals Arising from the Operator Approach
б.г.
ISBN отсутствует
Статья
Ayryan, E.
Approximate Calculation of Functional Integrals Arising from the Operator Approach / E.Ayryan, J.Busa, M.Hnatic, T.Lucivjansky, V.Malyutin. – Text : electronic // Physica A. – 2025. – Vol. 670. – P. 130616. – URL: https://doi.org/10.1016/j.physa.2025.130616. – Bibliogr.: 66.
We apply the operator approach to a stochastic system belonging to a class of death-birth processes, which we introduce utilizing the master equation approach. By employing Doi-Peliti formalism we recast the master equation in the form of a Schrödinger-like equation. Therein appearing pseudo-Hamiltonian is conveniently expressed in a suitable Fock space, constructed using bosonic-like creation and annihilation operators. The kernel of the associated time evolution operator is rewritten using a functional integral, for which we propose an approximate method that allows its analytical treatment. The method is based on the expansion in eigenfunctions of the Hamiltonian generating given functional integral. In this manner, we obtain approximate values for the probabilities of the system being in the first and second states for the case of the pure birth process
Спец.(статьи,препринты) = С 323.5 - Теория взаимодействия частиц при высоких энергиях$
Спец.(статьи,препринты) = С 135 в - Интегрирование в функциональных пространствах. Континуальное интегрирование
ОИЯИ = ОИЯИ (JINR)2025
Ayryan, E.
Approximate Calculation of Functional Integrals Arising from the Operator Approach / E.Ayryan, J.Busa, M.Hnatic, T.Lucivjansky, V.Malyutin. – Text : electronic // Physica A. – 2025. – Vol. 670. – P. 130616. – URL: https://doi.org/10.1016/j.physa.2025.130616. – Bibliogr.: 66.
We apply the operator approach to a stochastic system belonging to a class of death-birth processes, which we introduce utilizing the master equation approach. By employing Doi-Peliti formalism we recast the master equation in the form of a Schrödinger-like equation. Therein appearing pseudo-Hamiltonian is conveniently expressed in a suitable Fock space, constructed using bosonic-like creation and annihilation operators. The kernel of the associated time evolution operator is rewritten using a functional integral, for which we propose an approximate method that allows its analytical treatment. The method is based on the expansion in eigenfunctions of the Hamiltonian generating given functional integral. In this manner, we obtain approximate values for the probabilities of the system being in the first and second states for the case of the pure birth process
Спец.(статьи,препринты) = С 323.5 - Теория взаимодействия частиц при высоких энергиях$
Спец.(статьи,препринты) = С 135 в - Интегрирование в функциональных пространствах. Континуальное интегрирование
ОИЯИ = ОИЯИ (JINR)2025