Поиск :
Личный кабинет :
Электронный каталог: Iakhibbaev, R. M. - Effective Potential in Leading Logarithmic Approximation in Nonrenormalizable SO(N) Scalar Field ...
Iakhibbaev, R. M. - Effective Potential in Leading Logarithmic Approximation in Nonrenormalizable SO(N) Scalar Field ...

Статья
Автор: Iakhibbaev, R. M.
International Journal of Modern Physics A: Effective Potential in Leading Logarithmic Approximation in Nonrenormalizable SO(N) Scalar Field ...
б.г.
ISBN отсутствует
Автор: Iakhibbaev, R. M.
International Journal of Modern Physics A: Effective Potential in Leading Logarithmic Approximation in Nonrenormalizable SO(N) Scalar Field ...
б.г.
ISBN отсутствует
Статья
Iakhibbaev, R.M.
Effective Potential in Leading Logarithmic Approximation in Nonrenormalizable SO(N) Scalar Field Theories / R.M.Iakhibbaev, D.M.Tolkachev. – Text : electronic // International Journal of Modern Physics A. – 2025. – Vol. 40, No. 3. – P. 2450174. – URL: https://doi.org/10.1142/S0217751X24501744. – Bibliogr.: 24.
The study of the effective potential for nonrenormalizable scalar S O ( N ) symmetric theories leads to recurrence relations for the coefficients of the leading logarithms due to the Bogoliubov–Parasiuk theorem. These relations can be transformed into generalized renormalization-group (RG) equation which can be solved exactly in the large-N limit.
ОИЯИ = ОИЯИ (JINR)2025
Спец.(статьи,препринты) = С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация$
Бюллетени = 28/025
Iakhibbaev, R.M.
Effective Potential in Leading Logarithmic Approximation in Nonrenormalizable SO(N) Scalar Field Theories / R.M.Iakhibbaev, D.M.Tolkachev. – Text : electronic // International Journal of Modern Physics A. – 2025. – Vol. 40, No. 3. – P. 2450174. – URL: https://doi.org/10.1142/S0217751X24501744. – Bibliogr.: 24.
The study of the effective potential for nonrenormalizable scalar S O ( N ) symmetric theories leads to recurrence relations for the coefficients of the leading logarithms due to the Bogoliubov–Parasiuk theorem. These relations can be transformed into generalized renormalization-group (RG) equation which can be solved exactly in the large-N limit.
ОИЯИ = ОИЯИ (JINR)2025
Спец.(статьи,препринты) = С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация$
Бюллетени = 28/025