Поиск :
Личный кабинет :
Электронный каталог: Zdravkovic, S. - Two-Component Model of a Microtubule in a Semi-Discrete Approximation
Zdravkovic, S. - Two-Component Model of a Microtubule in a Semi-Discrete Approximation
Статья
Автор: Zdravkovic, S.
Chaos, Solitons & Fractals [Electronic resource]: Two-Component Model of a Microtubule in a Semi-Discrete Approximation
б.г.
ISBN отсутствует
Автор: Zdravkovic, S.
Chaos, Solitons & Fractals [Electronic resource]: Two-Component Model of a Microtubule in a Semi-Discrete Approximation
б.г.
ISBN отсутствует
Статья
Zdravkovic, S.
Two-Component Model of a Microtubule in a Semi-Discrete Approximation / S.Zdravkovic, A.N.Bugay, [et al.] // Chaos, Solitons & Fractals [Electronic resource]. – 2024. – Vol. 189, Part. 1. – P. 115623. – URL: https://doi.org/10.1016/j.chaos.2024.115623. – Bibliogr.: 50.
In the present work, we study the nonlinear dynamics of a microtubule, an important part of the cytoskeleton. We use a two-component model of the relevant system. A crucial nonlinear differential equation is solved with semi-discrete approximation, yielding some localized modulated solitary waves called the breathers. A detailed estimation of the existing parameters is provided. The numerical investigation shows that the solutions are robust only if the carrier velocity of the breather wave is higher than its envelope velocity. That disproves the previously accepted solutions based on the equality of these velocities
ОИЯИ = ОИЯИ (JINR)2024
Спец.(статьи,препринты) = С 325.4 - Нелинейные системы. Хаос и синергетика. Фракталы$
Спец.(статьи,препринты) = С 17 в - Аппроксимационные методы. Эмпирические формулы
Zdravkovic, S.
Two-Component Model of a Microtubule in a Semi-Discrete Approximation / S.Zdravkovic, A.N.Bugay, [et al.] // Chaos, Solitons & Fractals [Electronic resource]. – 2024. – Vol. 189, Part. 1. – P. 115623. – URL: https://doi.org/10.1016/j.chaos.2024.115623. – Bibliogr.: 50.
In the present work, we study the nonlinear dynamics of a microtubule, an important part of the cytoskeleton. We use a two-component model of the relevant system. A crucial nonlinear differential equation is solved with semi-discrete approximation, yielding some localized modulated solitary waves called the breathers. A detailed estimation of the existing parameters is provided. The numerical investigation shows that the solutions are robust only if the carrier velocity of the breather wave is higher than its envelope velocity. That disproves the previously accepted solutions based on the equality of these velocities
ОИЯИ = ОИЯИ (JINR)2024
Спец.(статьи,препринты) = С 325.4 - Нелинейные системы. Хаос и синергетика. Фракталы$
Спец.(статьи,препринты) = С 17 в - Аппроксимационные методы. Эмпирические формулы