Поиск :
Личный кабинет :
Электронный каталог: Tumasyan, A. - Reconstruction of Decays to Merged Photons Using End-to-End Deep Learning with Domain Continuatio...
Tumasyan, A. - Reconstruction of Decays to Merged Photons Using End-to-End Deep Learning with Domain Continuatio...
Статья
Автор: Tumasyan, A.
Physical Review D [Electronic resource]: Reconstruction of Decays to Merged Photons Using End-to-End Deep Learning with Domain Continuatio...
б.г.
ISBN отсутствует
Автор: Tumasyan, A.
Physical Review D [Electronic resource]: Reconstruction of Decays to Merged Photons Using End-to-End Deep Learning with Domain Continuatio...
б.г.
ISBN отсутствует
Статья
Tumasyan, A.
Reconstruction of Decays to Merged Photons Using End-to-End Deep Learning with Domain Continuation in the CMS Detector / A.Tumasyan, S.Afanasiev, D.Budkouski, I.Golutvin, I.Gorbunov, V.Karjavine, V.Korenkov, N.Krasnikov, A.Lanev, A.Malakhov, V.Matveev, V.Palichik, V.Perelygin, M.Savina, V.Shalaev, S.Shmatov, S.Shulha, V.Smirnov, O.Teryaev, N.Voytishin, B.S.Yuldashev, A.Zarubin, I.Zhizhin, M.Finger, M.Finger Jr., Z.Tsamalaidze, [CMS Collab.] // Physical Review D [Electronic resource]. – 2023. – Vol.108, No.5. – P. 052002. – URL: https://doi.org/10.1103/PhysRevD.108.052002. – Bibliogr.: 45.
A novel technique based on machine learning is introduced to reconstruct the decays of highly Lorentz-boosted particles. Using an end-to-end deep learning strategy, the technique bypasses existing rule-based particle reconstruction methods typically used in high energy physics analyses. It uses minimally processed detector data as input and directly outputs particle properties of interest. The new technique is demonstrated for the reconstruction of the invariant mass of particles decaying in the CMS detector. The decay of a hypothetical scalar particle *A into two photons, *A *> *g*g, is chosen as a benchmark decay. Lorentz boosts *g&sub(L) = 60–600 are considered, ranging from regimes where both photons are resolved to those where the photons are closely merged as one object. A training method using domain continuation is introduced, enabling the invariant mass reconstruction of unresolved photon pairs in a novel way. The new technique is validated using *p*0 *> *g*g decays in LHC collision data.
Спец.(статьи,препринты) = С 346.2в - Взаимодействие протонов с протонами
Спец.(статьи,препринты) = Ц 849 - Искусственный интеллект. Теория и практика
ОИЯИ = ОИЯИ (JINR)2023
Tumasyan, A.
Reconstruction of Decays to Merged Photons Using End-to-End Deep Learning with Domain Continuation in the CMS Detector / A.Tumasyan, S.Afanasiev, D.Budkouski, I.Golutvin, I.Gorbunov, V.Karjavine, V.Korenkov, N.Krasnikov, A.Lanev, A.Malakhov, V.Matveev, V.Palichik, V.Perelygin, M.Savina, V.Shalaev, S.Shmatov, S.Shulha, V.Smirnov, O.Teryaev, N.Voytishin, B.S.Yuldashev, A.Zarubin, I.Zhizhin, M.Finger, M.Finger Jr., Z.Tsamalaidze, [CMS Collab.] // Physical Review D [Electronic resource]. – 2023. – Vol.108, No.5. – P. 052002. – URL: https://doi.org/10.1103/PhysRevD.108.052002. – Bibliogr.: 45.
A novel technique based on machine learning is introduced to reconstruct the decays of highly Lorentz-boosted particles. Using an end-to-end deep learning strategy, the technique bypasses existing rule-based particle reconstruction methods typically used in high energy physics analyses. It uses minimally processed detector data as input and directly outputs particle properties of interest. The new technique is demonstrated for the reconstruction of the invariant mass of particles decaying in the CMS detector. The decay of a hypothetical scalar particle *A into two photons, *A *> *g*g, is chosen as a benchmark decay. Lorentz boosts *g&sub(L) = 60–600 are considered, ranging from regimes where both photons are resolved to those where the photons are closely merged as one object. A training method using domain continuation is introduced, enabling the invariant mass reconstruction of unresolved photon pairs in a novel way. The new technique is validated using *p*0 *> *g*g decays in LHC collision data.
Спец.(статьи,препринты) = С 346.2в - Взаимодействие протонов с протонами
Спец.(статьи,препринты) = Ц 849 - Искусственный интеллект. Теория и практика
ОИЯИ = ОИЯИ (JINR)2023