Поиск :
Личный кабинет :
Электронный каталог: Meshcheriakov, N. P. - Higher Logarithms and *e-Poles for the MS-Like Renormalization Prescriptions
Meshcheriakov, N. P. - Higher Logarithms and *e-Poles for the MS-Like Renormalization Prescriptions
Статья
Автор: Meshcheriakov, N. P.
Journal of High Energy Physics [Electronic resource]: Higher Logarithms and *e-Poles for the MS-Like Renormalization Prescriptions
б.г.
ISBN отсутствует
Автор: Meshcheriakov, N. P.
Journal of High Energy Physics [Electronic resource]: Higher Logarithms and *e-Poles for the MS-Like Renormalization Prescriptions
б.г.
ISBN отсутствует
Статья
Meshcheriakov, N.P.
Higher Logarithms and *e-Poles for the MS-Like Renormalization Prescriptions / N.P.Meshcheriakov, V.V.Shatalova, K.V.Stepanyantz // Journal of High Energy Physics [Electronic resource]. – 2023. – Vol. 2023, No. 12. – P. 097. – URL: https://link.springer.com/article/10.1007/JHEP12(2023)097. – Bibliogr.: 61.
We consider a version of dimensional regularization (reduction) in which the dimensionful regularization parameter *L is in general different from the renormalization scale *m. Then in the scheme analogous to the minimal subtraction the renormalization constants contain *e-poles, powers of ln *L/*m, and mixed terms of the structure *e−q ln&sup(p) *L/*m. For the MS-like schemes we present explicit expressions for the coefficients at all these structures which relate them to the coefficients in the renormalization group functions, namely in the *b-function and in the anomalous dimension. In particular, for the pure *e-poles we present explicit solutions of the ’t Hooft pole equations. Also we construct simple all-loop expressions for the renormalization constants (also written in terms of the renormalization group functions) which produce all *e-poles and logarithms and establish a number of relations between various coefficients at *e-poles and logarithms. The results are illustrated by some examples.
Спец.(статьи,препринты) = С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация$
ОИЯИ = ОИЯИ (JINR)2023
Meshcheriakov, N.P.
Higher Logarithms and *e-Poles for the MS-Like Renormalization Prescriptions / N.P.Meshcheriakov, V.V.Shatalova, K.V.Stepanyantz // Journal of High Energy Physics [Electronic resource]. – 2023. – Vol. 2023, No. 12. – P. 097. – URL: https://link.springer.com/article/10.1007/JHEP12(2023)097. – Bibliogr.: 61.
We consider a version of dimensional regularization (reduction) in which the dimensionful regularization parameter *L is in general different from the renormalization scale *m. Then in the scheme analogous to the minimal subtraction the renormalization constants contain *e-poles, powers of ln *L/*m, and mixed terms of the structure *e−q ln&sup(p) *L/*m. For the MS-like schemes we present explicit expressions for the coefficients at all these structures which relate them to the coefficients in the renormalization group functions, namely in the *b-function and in the anomalous dimension. In particular, for the pure *e-poles we present explicit solutions of the ’t Hooft pole equations. Also we construct simple all-loop expressions for the renormalization constants (also written in terms of the renormalization group functions) which produce all *e-poles and logarithms and establish a number of relations between various coefficients at *e-poles and logarithms. The results are illustrated by some examples.
Спец.(статьи,препринты) = С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация$
ОИЯИ = ОИЯИ (JINR)2023