Поиск :
Личный кабинет :
Электронный каталог: Komarova, M. - Strong Coupling Asymptotics of RG-Function
Komarova, M. - Strong Coupling Asymptotics of RG-Function
Книга (аналит. описание)
Автор: Komarova, M.
15th Chaotic Modeling and Simulation International Conference [Electronic resource]: Strong Coupling Asymptotics of RG-Function
б.г.
ISBN отсутствует
Автор: Komarova, M.
15th Chaotic Modeling and Simulation International Conference [Electronic resource]: Strong Coupling Asymptotics of RG-Function
б.г.
ISBN отсутствует
Книга (аналит. описание)
Komarova, M.
Strong Coupling Asymptotics of RG-Function / M.Komarova, M.Kompaniets, M.Nalimov // 15th Chaotic Modeling and Simulation International Conference [Electronic resource] / Ed.: C.H.Skiadas, Y.Dimotikalis. – Cham : Springer, 2023. – P. 141-156. – URL: https://doi.org/10.1007/978-3-031-27082-6_12. – Bibliogr.: 21.
The quantum-field perturbation theory is commonly used in the theoretical physics. But the strong coupling problem it is one of the most essential here. Here we will present the results of the strong coupling investigation to the critical behavior description on the base of the well known theory and standard quantum electro dynamic model. For the strong coupling problem investigation we have used the known quantum field convergent perturbation expansion which is convergent for the arbitrary coupling constant. One have obtained the strong coupling asymptotes for the renormalization group functions in the , where the previous authors have obtained the results contradicted. Moreover we have considered the another well known example of the strong-coupling problem. Namely it is the QED theory, where the correspondent problem of the “Landau pole” or the “Moscow zero” of the beta-function have led to the well known discussion about the common base of the quantum field theory. – (Springer Proceedings in Complexity) .
ОИЯИ = ОИЯИ (JINR)2023
Спец.(статьи,препринты) = С 324.2 - Нелокальные и нелинейные теории поля. Теории с высшими производными. Теории с индефинитной метрикой. Квантовая теория протяженных объектов. Струны. Мембраны. Мешки$
Спец.(статьи,препринты) = С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация$
Komarova, M.
Strong Coupling Asymptotics of RG-Function / M.Komarova, M.Kompaniets, M.Nalimov // 15th Chaotic Modeling and Simulation International Conference [Electronic resource] / Ed.: C.H.Skiadas, Y.Dimotikalis. – Cham : Springer, 2023. – P. 141-156. – URL: https://doi.org/10.1007/978-3-031-27082-6_12. – Bibliogr.: 21.
The quantum-field perturbation theory is commonly used in the theoretical physics. But the strong coupling problem it is one of the most essential here. Here we will present the results of the strong coupling investigation to the critical behavior description on the base of the well known theory and standard quantum electro dynamic model. For the strong coupling problem investigation we have used the known quantum field convergent perturbation expansion which is convergent for the arbitrary coupling constant. One have obtained the strong coupling asymptotes for the renormalization group functions in the , where the previous authors have obtained the results contradicted. Moreover we have considered the another well known example of the strong-coupling problem. Namely it is the QED theory, where the correspondent problem of the “Landau pole” or the “Moscow zero” of the beta-function have led to the well known discussion about the common base of the quantum field theory. – (Springer Proceedings in Complexity) .
ОИЯИ = ОИЯИ (JINR)2023
Спец.(статьи,препринты) = С 324.2 - Нелокальные и нелинейные теории поля. Теории с высшими производными. Теории с индефинитной метрикой. Квантовая теория протяженных объектов. Струны. Мембраны. Мешки$
Спец.(статьи,препринты) = С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация$