Поиск :
Личный кабинет :
Электронный каталог: Gusev, A. A. - Geometric Collective Model of Atomic Nuclei: Finite Element Method Implementations
Gusev, A. A. - Geometric Collective Model of Atomic Nuclei: Finite Element Method Implementations
Статья
Автор: Gusev, A. A.
Физика элементарных частиц и атомного ядра: Geometric Collective Model of Atomic Nuclei: Finite Element Method Implementations : [Abstract]
б.г.
ISBN отсутствует
Автор: Gusev, A. A.
Физика элементарных частиц и атомного ядра: Geometric Collective Model of Atomic Nuclei: Finite Element Method Implementations : [Abstract]
б.г.
ISBN отсутствует
Статья
Gusev, A.A.
Geometric Collective Model of Atomic Nuclei: Finite Element Method Implementations : [Abstract] / A.A.Gusev, G.Chuluunbaatar, S.I.Vinitsky, G.S.Pogosyan, [a.o.] // Физика элементарных частиц и атомного ядра. – 2023. – Т.54, №6. – P.1152. – URL: http://www1.jinr.ru/Pepan/v-54-6/04_Gusev_ann.pdf.
The piecewise polynomial functions constructed from the multivariate Hermitian interpolation polynomials that are continuous together with derivatives on the boundaries of finite elements are used in implementations of the high-accuracy finite element method (FEM). The efficiency of the finite element schemes, algorithms and program GCMFEM implemented in Maple and Mathematica is demonstrated by reference calculations of the boundary value problems (BVPs) for the Geometric Collective Model (GSM) of atomic nuclei. The BVP for GSM is also reduced to the BVP for a system of ordinary differential equations, which is solved by program KANTBP 5M implemented in Maple and compared with solution of algebraic eigenvalue problem in representation of the basis functions associated within irreducible representations of the U (5) ⊃ O(5) ⊃ O(3) chain of groups.
ОИЯИ = ОИЯИ (JINR)2023
Спец.(статьи,препринты) = С 341 а1 - Математические методы в теории ядра
Бюллетени = 6/024
Gusev, A.A.
Geometric Collective Model of Atomic Nuclei: Finite Element Method Implementations : [Abstract] / A.A.Gusev, G.Chuluunbaatar, S.I.Vinitsky, G.S.Pogosyan, [a.o.] // Физика элементарных частиц и атомного ядра. – 2023. – Т.54, №6. – P.1152. – URL: http://www1.jinr.ru/Pepan/v-54-6/04_Gusev_ann.pdf.
The piecewise polynomial functions constructed from the multivariate Hermitian interpolation polynomials that are continuous together with derivatives on the boundaries of finite elements are used in implementations of the high-accuracy finite element method (FEM). The efficiency of the finite element schemes, algorithms and program GCMFEM implemented in Maple and Mathematica is demonstrated by reference calculations of the boundary value problems (BVPs) for the Geometric Collective Model (GSM) of atomic nuclei. The BVP for GSM is also reduced to the BVP for a system of ordinary differential equations, which is solved by program KANTBP 5M implemented in Maple and compared with solution of algebraic eigenvalue problem in representation of the basis functions associated within irreducible representations of the U (5) ⊃ O(5) ⊃ O(3) chain of groups.
ОИЯИ = ОИЯИ (JINR)2023
Спец.(статьи,препринты) = С 341 а1 - Математические методы в теории ядра
Бюллетени = 6/024