Поиск :
Личный кабинет :
Электронный каталог: Antonov, N. V. - Effect of Random Environment on Kinetic Roughening: Kardar-Parisi-Zhang Model with a Static Noise...
Antonov, N. V. - Effect of Random Environment on Kinetic Roughening: Kardar-Parisi-Zhang Model with a Static Noise...
Статья
Автор: Antonov, N. V.
Физика элементарных частиц и атомного ядра. Письма: Effect of Random Environment on Kinetic Roughening: Kardar-Parisi-Zhang Model with a Static Noise... : [Abstract]
б.г.
ISBN отсутствует
Автор: Antonov, N. V.
Физика элементарных частиц и атомного ядра. Письма: Effect of Random Environment on Kinetic Roughening: Kardar-Parisi-Zhang Model with a Static Noise... : [Abstract]
б.г.
ISBN отсутствует
Статья
Antonov, N.V.
Effect of Random Environment on Kinetic Roughening: Kardar-Parisi-Zhang Model with a Static Noise Coupled to the Navier-Stokes Equation : [Abstract] / N.V.Antonov, P.I.Kakin, M.A.Reiter // Физика элементарных частиц и атомного ядра. Письма. – 2023. – Т.20, №5. – P.1222-1223. – URL: http://www1.jinr.ru/Pepan_letters/panl_2023_5/16_Antonov_ann.pdf.
Kinetic roughening of a randomly growing surface can be modelled by the Kardar–Parisi–Zhang equation with a time-independent (“spatially quenched” or “columnar”) random noise. In this paper, we use the field-theoretic renormalization group approach to investigate how a randomly moving medium affects the kinetic roughening. The medium is described by the stochastic differential Navier–Stokes equation for incompressible viscous fluid with an external stirring force. We find that the action functional for the full stochastic problem should be extended to be renormalizable: a new nonlinearity must be introduced. Moreover, in order to correctly reconcile dynamics of the scalar and velocity fields, a new parameter must be introduced as a factor in the covariant derivative of the scalar field. The resulting action functional involves four coupling constants and a dimensionless ratio of kinematic coefficients. The one-loop calculation (the leading order of the expansion in ε = 4 − d with d being the space dimension) shows that the renormalization group equations in the five-dimensional space of those parameters reveal a curve of fixed points that involves an infrared attractive segment for ε > 0.
ОИЯИ = ОИЯИ (JINR)2023
Спец.(статьи,препринты) = С 326 - Квантовая теория систем из многих частиц. Квантовая статистика
Antonov, N.V.
Effect of Random Environment on Kinetic Roughening: Kardar-Parisi-Zhang Model with a Static Noise Coupled to the Navier-Stokes Equation : [Abstract] / N.V.Antonov, P.I.Kakin, M.A.Reiter // Физика элементарных частиц и атомного ядра. Письма. – 2023. – Т.20, №5. – P.1222-1223. – URL: http://www1.jinr.ru/Pepan_letters/panl_2023_5/16_Antonov_ann.pdf.
Kinetic roughening of a randomly growing surface can be modelled by the Kardar–Parisi–Zhang equation with a time-independent (“spatially quenched” or “columnar”) random noise. In this paper, we use the field-theoretic renormalization group approach to investigate how a randomly moving medium affects the kinetic roughening. The medium is described by the stochastic differential Navier–Stokes equation for incompressible viscous fluid with an external stirring force. We find that the action functional for the full stochastic problem should be extended to be renormalizable: a new nonlinearity must be introduced. Moreover, in order to correctly reconcile dynamics of the scalar and velocity fields, a new parameter must be introduced as a factor in the covariant derivative of the scalar field. The resulting action functional involves four coupling constants and a dimensionless ratio of kinematic coefficients. The one-loop calculation (the leading order of the expansion in ε = 4 − d with d being the space dimension) shows that the renormalization group equations in the five-dimensional space of those parameters reveal a curve of fixed points that involves an infrared attractive segment for ε > 0.
ОИЯИ = ОИЯИ (JINR)2023
Спец.(статьи,препринты) = С 326 - Квантовая теория систем из многих частиц. Квантовая статистика