Поиск :
Личный кабинет :
Электронный каталог: Izmailian, N. - Exact Coefficients of Finite-Size Corrections in the Ising Model with Brascamp-Kunz Boundary Cond...
Izmailian, N. - Exact Coefficients of Finite-Size Corrections in the Ising Model with Brascamp-Kunz Boundary Cond...
Статья
Автор: Izmailian, N.
Journal of Physics A: Mathematical and Theoretical [Electronic resource]: Exact Coefficients of Finite-Size Corrections in the Ising Model with Brascamp-Kunz Boundary Cond...
б.г.
ISBN отсутствует
Автор: Izmailian, N.
Journal of Physics A: Mathematical and Theoretical [Electronic resource]: Exact Coefficients of Finite-Size Corrections in the Ising Model with Brascamp-Kunz Boundary Cond...
б.г.
ISBN отсутствует
Статья
Izmailian, N.
Exact Coefficients of Finite-Size Corrections in the Ising Model with Brascamp-Kunz Boundary Conditions and Their Relationships for Strip and Cylindrical Geometries / N.Izmailian, R.Kenna, Vl.V.Papoyan // Journal of Physics A: Mathematical and Theoretical [Electronic resource]. – 2023. – Vol.56, No.43. – P.435007. – URL: https://doi.org/10.1088/1751-8121/acf96b.
We derive exact finite-size corrections for the free energy F of the Ising model on the M x 2N square lattice with Brascamp–Kunz boundary conditions. We calculate ratios of r&sub(p)(*r) pth coefficients of F for the infinitely long cylinder (M *> *$) and the infinitely long Brascamp–Kunz strip (N *> *$) at varying values of the aspect ratio *r=(M +1)/2N. Like previous studies have shown for the two-dimensional dimer model, the limiting values p *> *$ of r&sub(p)(*r) exhibit abrupt anomalous behavior at certain values of ρ. These critical values of ρ and the limiting values of the finite-size-expansion-coefficient ratios differ, however, between the two models.
ОИЯИ = ОИЯИ (JINR)2023
Спец.(статьи,препринты) = С 325.1 - Точно решаемые и решеточные модели
Бюллетени = 7/024
Izmailian, N.
Exact Coefficients of Finite-Size Corrections in the Ising Model with Brascamp-Kunz Boundary Conditions and Their Relationships for Strip and Cylindrical Geometries / N.Izmailian, R.Kenna, Vl.V.Papoyan // Journal of Physics A: Mathematical and Theoretical [Electronic resource]. – 2023. – Vol.56, No.43. – P.435007. – URL: https://doi.org/10.1088/1751-8121/acf96b.
We derive exact finite-size corrections for the free energy F of the Ising model on the M x 2N square lattice with Brascamp–Kunz boundary conditions. We calculate ratios of r&sub(p)(*r) pth coefficients of F for the infinitely long cylinder (M *> *$) and the infinitely long Brascamp–Kunz strip (N *> *$) at varying values of the aspect ratio *r=(M +1)/2N. Like previous studies have shown for the two-dimensional dimer model, the limiting values p *> *$ of r&sub(p)(*r) exhibit abrupt anomalous behavior at certain values of ρ. These critical values of ρ and the limiting values of the finite-size-expansion-coefficient ratios differ, however, between the two models.
ОИЯИ = ОИЯИ (JINR)2023
Спец.(статьи,препринты) = С 325.1 - Точно решаемые и решеточные модели
Бюллетени = 7/024