Поиск :
Личный кабинет :
Электронный каталог: Altaisky, M. - Are There Any Landau Poles in Wavelet-Based Quantum Field Theory?
Altaisky, M. - Are There Any Landau Poles in Wavelet-Based Quantum Field Theory?
Статья
Автор: Altaisky, M.
Physical Review D [Electronic resource]: Are There Any Landau Poles in Wavelet-Based Quantum Field Theory?
б.г.
ISBN отсутствует
Автор: Altaisky, M.
Physical Review D [Electronic resource]: Are There Any Landau Poles in Wavelet-Based Quantum Field Theory?
б.г.
ISBN отсутствует
Статья
Altaisky, M.
Are There Any Landau Poles in Wavelet-Based Quantum Field Theory? / M.Altaisky, M.Hnatich // Physical Review D [Electronic resource]. – 2023. – Vol.108, No.8. – P.085023. – URL: https://doi.org/10.1103/PhysRevD.108.085023. – Bibliogr.:53.
Following previous work by one of the authors [M. V. Altaisky, Unifying renormalization group and the continuous wavelet transform, Phys. Rev. D 93, 105043 (2016).], we develop a new approach to the renormalization group, where the effective action functional Γ&sub(A)[ϕ] is a sum of all fluctuations of scales from the size of the system L down to the scale of observation A. It is shown that the renormalization flow equation of the type ∂Γ&sub(A)/∂lnA=−Y(A) is a limiting case of such consideration, when the running coupling constant is assumed to be a differentiable function of scale. In this approximation, the running coupling constant, calculated at one-loop level, suffers from the Landau pole. In general, when the scale-dependent coupling constant is a nondifferentiable function of scale, the Feynman loop expansion results in a difference equation. This keeps the coupling constant finite for any finite value of scale A. As an example, we consider Euclidean ϕ4 field theory.
ОИЯИ = ОИЯИ (JINR)2023
Спец.(статьи,препринты) = С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация$
Бюллетени = 51/023
Altaisky, M.
Are There Any Landau Poles in Wavelet-Based Quantum Field Theory? / M.Altaisky, M.Hnatich // Physical Review D [Electronic resource]. – 2023. – Vol.108, No.8. – P.085023. – URL: https://doi.org/10.1103/PhysRevD.108.085023. – Bibliogr.:53.
Following previous work by one of the authors [M. V. Altaisky, Unifying renormalization group and the continuous wavelet transform, Phys. Rev. D 93, 105043 (2016).], we develop a new approach to the renormalization group, where the effective action functional Γ&sub(A)[ϕ] is a sum of all fluctuations of scales from the size of the system L down to the scale of observation A. It is shown that the renormalization flow equation of the type ∂Γ&sub(A)/∂lnA=−Y(A) is a limiting case of such consideration, when the running coupling constant is assumed to be a differentiable function of scale. In this approximation, the running coupling constant, calculated at one-loop level, suffers from the Landau pole. In general, when the scale-dependent coupling constant is a nondifferentiable function of scale, the Feynman loop expansion results in a difference equation. This keeps the coupling constant finite for any finite value of scale A. As an example, we consider Euclidean ϕ4 field theory.
ОИЯИ = ОИЯИ (JINR)2023
Спец.(статьи,препринты) = С 324.3 - Аксиоматическая теория поля. Аналитические свойства матричных элементов и дисперсионные соотношения. Разложение операторов вблизи светового конуса. Вопросы регуляризации и перенормировки. Размерная регуляризация$
Бюллетени = 51/023