Поиск :
Личный кабинет :
Электронный каталог: Amirkhanova, G. - Algorithm for Enhancing Event Reconstruction Efficiency by Addressing False Track Filtering Issue...
Amirkhanova, G. - Algorithm for Enhancing Event Reconstruction Efficiency by Addressing False Track Filtering Issue...
Статья
Автор: Amirkhanova, G.
Algorithms [Electronic resource]: Algorithm for Enhancing Event Reconstruction Efficiency by Addressing False Track Filtering Issue...
б.г.
ISBN отсутствует
Автор: Amirkhanova, G.
Algorithms [Electronic resource]: Algorithm for Enhancing Event Reconstruction Efficiency by Addressing False Track Filtering Issue...
б.г.
ISBN отсутствует
Статья
Amirkhanova, G.
Algorithm for Enhancing Event Reconstruction Efficiency by Addressing False Track Filtering Issues in the SPD NICA Experiment / G.Amirkhanova, G.Ososkov, [a.o.] // Algorithms [Electronic resource]. – 2023. – Vol.16, No.7. – P.312. – URL: https://doi.org/10.3390/a16070312. – Bibliogr.:19.
This paper introduces methods for parallelizing the algorithm to enhance the efficiency of event recovery in Spin Physics Detector (SPD) experiments at the Nuclotron-based Ion Collider Facility (NICA). The problem of eliminating false tracks during the particle trajectory detection process remains a crucial challenge in overcoming performance bottlenecks in processing collider data generated in high volumes and at a fast pace. In this paper, we propose and show fast parallel false track elimination methods based on the introduced criterion of a clustering-based thresholding approach with a chi-squared quality-of-fit metric. The proposed strategy achieves a good trade-off between the effectiveness of track reconstruction and the pace of execution on today’s advanced multicore computers. To facilitate this, a quality benchmark for reconstruction is established, using the root mean square (rms) error of spiral and polynomial fitting for the datasets identified as the subsequent track candidate by the neural network. Choosing the right benchmark enables us to maintain the recall and precision indicators of the neural network track recognition performance at a level that is satisfactory to physicists, even though these metrics will inevitably decline as the data noise increases. Moreover, it has been possible to improve the processing speed of the complete program pipeline by 6 times through parallelization of the algorithm, achieving a rate of 2000 events per second, even when handling extremely noisy input data.
ОИЯИ = ОИЯИ (JINR)2023
Спец.(статьи,препринты) = С 344.1ш - Методы обработки результатов измерений
Спец.(статьи,препринты) = Ц 840 в - Программы обработки экспериментальных данных и управление физическими установками$
Спец.(статьи,препринты) = Ц 84 а2 - Многомашинные комплексы вычислительных средств. Вычислительные системы и сети. Параллельные вычисления. Квантовые компьютеры
Бюллетени = 5/024
Amirkhanova, G.
Algorithm for Enhancing Event Reconstruction Efficiency by Addressing False Track Filtering Issues in the SPD NICA Experiment / G.Amirkhanova, G.Ososkov, [a.o.] // Algorithms [Electronic resource]. – 2023. – Vol.16, No.7. – P.312. – URL: https://doi.org/10.3390/a16070312. – Bibliogr.:19.
This paper introduces methods for parallelizing the algorithm to enhance the efficiency of event recovery in Spin Physics Detector (SPD) experiments at the Nuclotron-based Ion Collider Facility (NICA). The problem of eliminating false tracks during the particle trajectory detection process remains a crucial challenge in overcoming performance bottlenecks in processing collider data generated in high volumes and at a fast pace. In this paper, we propose and show fast parallel false track elimination methods based on the introduced criterion of a clustering-based thresholding approach with a chi-squared quality-of-fit metric. The proposed strategy achieves a good trade-off between the effectiveness of track reconstruction and the pace of execution on today’s advanced multicore computers. To facilitate this, a quality benchmark for reconstruction is established, using the root mean square (rms) error of spiral and polynomial fitting for the datasets identified as the subsequent track candidate by the neural network. Choosing the right benchmark enables us to maintain the recall and precision indicators of the neural network track recognition performance at a level that is satisfactory to physicists, even though these metrics will inevitably decline as the data noise increases. Moreover, it has been possible to improve the processing speed of the complete program pipeline by 6 times through parallelization of the algorithm, achieving a rate of 2000 events per second, even when handling extremely noisy input data.
ОИЯИ = ОИЯИ (JINR)2023
Спец.(статьи,препринты) = С 344.1ш - Методы обработки результатов измерений
Спец.(статьи,препринты) = Ц 840 в - Программы обработки экспериментальных данных и управление физическими установками$
Спец.(статьи,препринты) = Ц 84 а2 - Многомашинные комплексы вычислительных средств. Вычислительные системы и сети. Параллельные вычисления. Квантовые компьютеры
Бюллетени = 5/024