Поиск :
Личный кабинет :
Электронный каталог: Spiridonov, V. P. - The Supersymmetric Oscillator and a Differential-Delay Equation
Spiridonov, V. P. - The Supersymmetric Oscillator and a Differential-Delay Equation

Статья
Автор: Spiridonov, V. P.
Физика элементарных частиц и атомного ядра. Письма: The Supersymmetric Oscillator and a Differential-Delay Equation : [Abstract]
б.г.
ISBN отсутствует
Автор: Spiridonov, V. P.
Физика элементарных частиц и атомного ядра. Письма: The Supersymmetric Oscillator and a Differential-Delay Equation : [Abstract]
б.г.
ISBN отсутствует
Статья
Spiridonov, V.P.
The Supersymmetric Oscillator and a Differential-Delay Equation : [Abstract] / V.P.Spiridonov // Физика элементарных частиц и атомного ядра. Письма. – 2025. – Т. 22, № 6. – P. 1132. – URL: https://www1.jinr.ru/Pepan_letters/panl_2025_6/15_Spiridonov_ann_.pdf.
A model of the supersymmetric oscillator is considered which is based on a nonlinear differential-delay equation proposed by the author in 1992. This equation provides a realization of the Heisenberg–Weyl algebra by the mixed differential-difference operators and leads to a deformation of the Chebyshev–Hermite orthogonal polynomials. We discuss the general solution of this equation in a series form and describe its particular explicit solution associated with the one-gap Lame equation
Спец.(статьи,препринты) = С 323 б - Квантовые алгебры. Суперсимметричная квантовая механика. Парастатистики . Анионы. Прочие схемы квантования
Спец.(статьи,препринты) = С 324.1е - Суперсимметричные теории. Супергравитация. Суперструны$
ОИЯИ = ОИЯИ (JINR)2025
Spiridonov, V.P.
The Supersymmetric Oscillator and a Differential-Delay Equation : [Abstract] / V.P.Spiridonov // Физика элементарных частиц и атомного ядра. Письма. – 2025. – Т. 22, № 6. – P. 1132. – URL: https://www1.jinr.ru/Pepan_letters/panl_2025_6/15_Spiridonov_ann_.pdf.
A model of the supersymmetric oscillator is considered which is based on a nonlinear differential-delay equation proposed by the author in 1992. This equation provides a realization of the Heisenberg–Weyl algebra by the mixed differential-difference operators and leads to a deformation of the Chebyshev–Hermite orthogonal polynomials. We discuss the general solution of this equation in a series form and describe its particular explicit solution associated with the one-gap Lame equation
Спец.(статьи,препринты) = С 323 б - Квантовые алгебры. Суперсимметричная квантовая механика. Парастатистики . Анионы. Прочие схемы квантования
Спец.(статьи,препринты) = С 324.1е - Суперсимметричные теории. Супергравитация. Суперструны$
ОИЯИ = ОИЯИ (JINR)2025
На полку