Поиск :
Личный кабинет :
Электронный каталог: Papoyan, V. - Machine Learning in High-Momentum Particle Identification in the MPD Experiment
Papoyan, V. - Machine Learning in High-Momentum Particle Identification in the MPD Experiment

Статья
Автор: Papoyan, V.
Физика элементарных частиц и атомного ядра: Machine Learning in High-Momentum Particle Identification in the MPD Experiment : [Abstract]
б.г.
ISBN отсутствует
Автор: Papoyan, V.
Физика элементарных частиц и атомного ядра: Machine Learning in High-Momentum Particle Identification in the MPD Experiment : [Abstract]
б.г.
ISBN отсутствует
Статья
Papoyan, V.
Machine Learning in High-Momentum Particle Identification in the MPD Experiment : [Abstract] / V.Papoyan, A.Aparin, A.Ayriyan, H.Grigorian, A.Korobitsin // Физика элементарных частиц и атомного ядра. – 2025. – Т. 56, № 6 : Международная конференция «Математическое моделирование и вычислительная физика», Ереван, Армения, 21–25 октября 2024 г. : Материалы. – P. 1987. – URL: https://www1.jinr.ru/Pepan/v-56-6/Papoyan.pdf.
One of the problems in particle identification (PID) in the MPD experiment at the NICA accelerator complex is classification of particle species in high momentum range where conventional methods, such as n-sigma, lose efficiency. This study is devoted to application of gradient boosted decision trees (GBDT) for identification of six particle types which were produced in bismuth–bismuth simulated collisions at %s&sub(NN) = 9.2 GeV. The XGBoost algorithm was compared to the n-sigma and blind methods, evaluating efficiency and contamination. Results show that XGBoost provides significant PID performance in momentum ranges where feature overlap limits traditional techniques, highlighting the potential of machine learning to improve MPD analyses.
Спец.(статьи,препринты) = С 344.1ш - Методы обработки результатов измерений
Спец.(статьи,препринты) = Ц 849 - Искусственный интеллект. Теория и практика
ОИЯИ = ОИЯИ (JINR)2025
Papoyan, V.
Machine Learning in High-Momentum Particle Identification in the MPD Experiment : [Abstract] / V.Papoyan, A.Aparin, A.Ayriyan, H.Grigorian, A.Korobitsin // Физика элементарных частиц и атомного ядра. – 2025. – Т. 56, № 6 : Международная конференция «Математическое моделирование и вычислительная физика», Ереван, Армения, 21–25 октября 2024 г. : Материалы. – P. 1987. – URL: https://www1.jinr.ru/Pepan/v-56-6/Papoyan.pdf.
One of the problems in particle identification (PID) in the MPD experiment at the NICA accelerator complex is classification of particle species in high momentum range where conventional methods, such as n-sigma, lose efficiency. This study is devoted to application of gradient boosted decision trees (GBDT) for identification of six particle types which were produced in bismuth–bismuth simulated collisions at %s&sub(NN) = 9.2 GeV. The XGBoost algorithm was compared to the n-sigma and blind methods, evaluating efficiency and contamination. Results show that XGBoost provides significant PID performance in momentum ranges where feature overlap limits traditional techniques, highlighting the potential of machine learning to improve MPD analyses.
Спец.(статьи,препринты) = С 344.1ш - Методы обработки результатов измерений
Спец.(статьи,препринты) = Ц 849 - Искусственный интеллект. Теория и практика
ОИЯИ = ОИЯИ (JINR)2025
На полку