Поиск :
Личный кабинет :
Электронный каталог: Baranov, D. A. - A Computational Model of Microstrip Coordinate Detectors for the Hybrid Tracker in the BM@N Exper...
Baranov, D. A. - A Computational Model of Microstrip Coordinate Detectors for the Hybrid Tracker in the BM@N Exper...

Статья
Автор: Baranov, D. A.
Физика элементарных частиц и атомного ядра: A Computational Model of Microstrip Coordinate Detectors for the Hybrid Tracker in the BM@N Exper... : [Abstract]
б.г.
ISBN отсутствует
Автор: Baranov, D. A.
Физика элементарных частиц и атомного ядра: A Computational Model of Microstrip Coordinate Detectors for the Hybrid Tracker in the BM@N Exper... : [Abstract]
б.г.
ISBN отсутствует
Статья
Baranov, D.A.
A Computational Model of Microstrip Coordinate Detectors for the Hybrid Tracker in the BM@N Experiment : [Abstract] / D.A.Baranov // Физика элементарных частиц и атомного ядра. – 2025. – Т. 56, № 6 : Международная конференция «Математическое моделирование и вычислительная физика», Ереван, Армения, 21–25 октября 2024 г. : Материалы. – P. 1935-1936. – URL: https://www1.jinr.ru/Pepan/v-56-6/Baranov.pdf.
The study of dense baryonic matter formed as a result of relativistic heavy-ion collisions is one of the important research areas in High Energy Physics (HEP). The nuclear matter in this phase, called a quark–gluon plasma (QGP), is a mixture of quarks, antiquarks, and gluons when they are freed of their strong attraction to one another under extremely high energy densities. One of the appropriate experiments that can create the most optimal energy conditions for the formation of this matter is Baryonic Matter at Nuclotron (BM@N). A unique experimental setup consisting of various detector subsystems was developed for this experiment. The core of the setup is a hybrid tracker made up of different types of microstrip coordinate detectors to register the trajectories of charged particles produced in primary heavy-ion collisions. It can be conditionally divided into three parts: the beam tracker (SiProf and SiBT), the inner (VSP, FSD and GEM) and outer (CSC) trackers. The aim of the work was to develop the computer model of the aforementioned detectors and prepare the software based on this model for realistic response simulation and reconstruction of spatial coordinates from microstip readout planes. The information given in the work refers to the configuration of the latest experimental run conducted in 2022–2023 (Run 8) and also for the upcoming run preliminarily scheduled for 2025 (Run 9).
Спец.(статьи,препринты) = Ц 840 в - Программы обработки экспериментальных данных и управление физическими установками$
ОИЯИ = ОИЯИ (JINR)2025
Baranov, D.A.
A Computational Model of Microstrip Coordinate Detectors for the Hybrid Tracker in the BM@N Experiment : [Abstract] / D.A.Baranov // Физика элементарных частиц и атомного ядра. – 2025. – Т. 56, № 6 : Международная конференция «Математическое моделирование и вычислительная физика», Ереван, Армения, 21–25 октября 2024 г. : Материалы. – P. 1935-1936. – URL: https://www1.jinr.ru/Pepan/v-56-6/Baranov.pdf.
The study of dense baryonic matter formed as a result of relativistic heavy-ion collisions is one of the important research areas in High Energy Physics (HEP). The nuclear matter in this phase, called a quark–gluon plasma (QGP), is a mixture of quarks, antiquarks, and gluons when they are freed of their strong attraction to one another under extremely high energy densities. One of the appropriate experiments that can create the most optimal energy conditions for the formation of this matter is Baryonic Matter at Nuclotron (BM@N). A unique experimental setup consisting of various detector subsystems was developed for this experiment. The core of the setup is a hybrid tracker made up of different types of microstrip coordinate detectors to register the trajectories of charged particles produced in primary heavy-ion collisions. It can be conditionally divided into three parts: the beam tracker (SiProf and SiBT), the inner (VSP, FSD and GEM) and outer (CSC) trackers. The aim of the work was to develop the computer model of the aforementioned detectors and prepare the software based on this model for realistic response simulation and reconstruction of spatial coordinates from microstip readout planes. The information given in the work refers to the configuration of the latest experimental run conducted in 2022–2023 (Run 8) and also for the upcoming run preliminarily scheduled for 2025 (Run 9).
Спец.(статьи,препринты) = Ц 840 в - Программы обработки экспериментальных данных и управление физическими установками$
ОИЯИ = ОИЯИ (JINR)2025
На полку