Поиск :
Личный кабинет :
Электронный каталог: Papoyan, V. V. - Exact Finite-Size Corrections in the Dimer Model on a Cylinder
Papoyan, V. V. - Exact Finite-Size Corrections in the Dimer Model on a Cylinder

Статья
Автор: Papoyan, V. V.
Physica Scripta: Exact Finite-Size Corrections in the Dimer Model on a Cylinder
б.г.
ISBN отсутствует
Автор: Papoyan, V. V.
Physica Scripta: Exact Finite-Size Corrections in the Dimer Model on a Cylinder
б.г.
ISBN отсутствует
Статья
Papoyan, V.V.
Exact Finite-Size Corrections in the Dimer Model on a Cylinder / V.V.Papoyan. – Text : electronic // Physica Scripta. – 2025. – Vol. 100, No. 4. – P. 045234. – URL: https://doi.org/10.1088/1402-4896/adbe0e. – Bibliogr.: 45.
The exact finite-size corrections to the free energy F of the dimer model on lattice M x N with cylindrical boundary conditions have been derived for three cases where the lattice is completely covered by dimers: M=2M, N=2N; M=2M-1, N=2N; and M=2M, N=2N-1. For these types of cylinders, ratios rp(ρ) of the pth coefficient of F have been calculated for the infinitely long cylinder (M*> *$) and infinitely long strip (N*>*$) at varying aspect ratios. As in previous studies of the dimer model on the rectangular lattice with free boundary conditions and for the Ising model with Brascamp-Kunz boundary conditions, the limiting values p → ∞ exhibit abrupt anomalous behaviour of ratios r&sub(p)(ρ) at certain values of ρ. These critical values of ρ and the limiting values of the finite-size expansion coefficient ratios vary between the different models.
ОИЯИ = ОИЯИ (JINR)2025
Спец.(статьи,препринты) = С 325.1 - Точно решаемые и решеточные модели
Бюллетени = 16/025
Papoyan, V.V.
Exact Finite-Size Corrections in the Dimer Model on a Cylinder / V.V.Papoyan. – Text : electronic // Physica Scripta. – 2025. – Vol. 100, No. 4. – P. 045234. – URL: https://doi.org/10.1088/1402-4896/adbe0e. – Bibliogr.: 45.
The exact finite-size corrections to the free energy F of the dimer model on lattice M x N with cylindrical boundary conditions have been derived for three cases where the lattice is completely covered by dimers: M=2M, N=2N; M=2M-1, N=2N; and M=2M, N=2N-1. For these types of cylinders, ratios rp(ρ) of the pth coefficient of F have been calculated for the infinitely long cylinder (M*> *$) and infinitely long strip (N*>*$) at varying aspect ratios. As in previous studies of the dimer model on the rectangular lattice with free boundary conditions and for the Ising model with Brascamp-Kunz boundary conditions, the limiting values p → ∞ exhibit abrupt anomalous behaviour of ratios r&sub(p)(ρ) at certain values of ρ. These critical values of ρ and the limiting values of the finite-size expansion coefficient ratios vary between the different models.
ОИЯИ = ОИЯИ (JINR)2025
Спец.(статьи,препринты) = С 325.1 - Точно решаемые и решеточные модели
Бюллетени = 16/025