Поиск :
Личный кабинет :
Электронный каталог: Hayrapetyan, A. - Performance of the CMS Electromagnetic Calorimeter in pp Collisions at *%s=13 TeV
Hayrapetyan, A. - Performance of the CMS Electromagnetic Calorimeter in pp Collisions at *%s=13 TeV
Статья
Автор: Hayrapetyan, A.
Journal of Instrumentation [Electronic resource]: Performance of the CMS Electromagnetic Calorimeter in pp Collisions at *%s=13 TeV
б.г.
ISBN отсутствует
Автор: Hayrapetyan, A.
Journal of Instrumentation [Electronic resource]: Performance of the CMS Electromagnetic Calorimeter in pp Collisions at *%s=13 TeV
б.г.
ISBN отсутствует
Статья
Hayrapetyan, A.
Performance of the CMS Electromagnetic Calorimeter in pp Collisions at *%s=13 TeV / A.Hayrapetyan, D.Budkouski, I.Golutvin, I.Gorbunov, V.Karjavine, V.Korenkov, N.Krasnikov, A.Lanev, A.Malakhov, V.Matveev, V.Palichik, V.Perelygin, M.Savina, V.Shalaev, S.Shmatov, S.Shulha, V.Smirnov, O.Teryaev, N.Voytishin, B.S.Yuldashev, A.Zarubin, I.Zhizhin, Z.Tsamalaidze, [CMS Collab.] // Journal of Instrumentation [Electronic resource]. – 2024. – Vol. 19, No. 9. – P. P09004. – URL: https://doi.org/10.1088/1748-0221/19/09/P09004. – Bibliogr.: 35.
The operation and performance of the Compact Muon Solenoid (CMS) electromagnetic calorimeter (ECAL) are presented, based on data collected in pp collisions at √s =13 TeV at the CERN LHC, in the years from 2015 to 2018 (LHC Run 2), corresponding to an integrated luminosity of 151 fb-1. The CMS ECAL is a scintillating lead-tungstate crystal calorimeter, with a silicon strip preshower detector in the forward region that provides precise measurements of the energy and the time-of-arrival of electrons and photons. The successful operation of the ECAL is crucial for a broad range of physics goals, ranging from observing the Higgs boson and measuring its properties, to other standard model measurements and searches for new phenomena. Precise calibration, alignment, and monitoring of the ECAL response are important ingredients to achieve these goals. To face the challenges posed by the higher luminosity, which characterized the operation of the LHC in Run 2, the procedures established during the 2011–2012 run of the LHC have been revisited and new methods have been developed for the energy measurement and for the ECAL calibration. The energy resolution of the calorimeter, for electrons from Z boson decays reaching the ECAL without significant loss of energy by bremsstrahlung, was better than 1.8%, 3.0%, and 4.5% in the |η| intervals [0.0,0.8], [0.8,1.5], [1.5, 2.5], respectively. This resulting performance is similar to that achieved during Run 1 in 2011–2012, in spite of the more severe running conditions.
ОИЯИ = ОИЯИ (JINR)2024
Hayrapetyan, A.
Performance of the CMS Electromagnetic Calorimeter in pp Collisions at *%s=13 TeV / A.Hayrapetyan, D.Budkouski, I.Golutvin, I.Gorbunov, V.Karjavine, V.Korenkov, N.Krasnikov, A.Lanev, A.Malakhov, V.Matveev, V.Palichik, V.Perelygin, M.Savina, V.Shalaev, S.Shmatov, S.Shulha, V.Smirnov, O.Teryaev, N.Voytishin, B.S.Yuldashev, A.Zarubin, I.Zhizhin, Z.Tsamalaidze, [CMS Collab.] // Journal of Instrumentation [Electronic resource]. – 2024. – Vol. 19, No. 9. – P. P09004. – URL: https://doi.org/10.1088/1748-0221/19/09/P09004. – Bibliogr.: 35.
The operation and performance of the Compact Muon Solenoid (CMS) electromagnetic calorimeter (ECAL) are presented, based on data collected in pp collisions at √s =13 TeV at the CERN LHC, in the years from 2015 to 2018 (LHC Run 2), corresponding to an integrated luminosity of 151 fb-1. The CMS ECAL is a scintillating lead-tungstate crystal calorimeter, with a silicon strip preshower detector in the forward region that provides precise measurements of the energy and the time-of-arrival of electrons and photons. The successful operation of the ECAL is crucial for a broad range of physics goals, ranging from observing the Higgs boson and measuring its properties, to other standard model measurements and searches for new phenomena. Precise calibration, alignment, and monitoring of the ECAL response are important ingredients to achieve these goals. To face the challenges posed by the higher luminosity, which characterized the operation of the LHC in Run 2, the procedures established during the 2011–2012 run of the LHC have been revisited and new methods have been developed for the energy measurement and for the ECAL calibration. The energy resolution of the calorimeter, for electrons from Z boson decays reaching the ECAL without significant loss of energy by bremsstrahlung, was better than 1.8%, 3.0%, and 4.5% in the |η| intervals [0.0,0.8], [0.8,1.5], [1.5, 2.5], respectively. This resulting performance is similar to that achieved during Run 1 in 2011–2012, in spite of the more severe running conditions.
ОИЯИ = ОИЯИ (JINR)2024