Поиск :
Личный кабинет :
Электронный каталог: Bertaina, M. - Machine Learning for Mini-EUSO Telescope Data Analysis
Bertaina, M. - Machine Learning for Mini-EUSO Telescope Data Analysis
Книга (аналит. описание)
Автор: Bertaina, M.
38th International Cosmic Ray Conference (ICRC2023), Nagoya, Japan, 26 July - 3 August, 2023 [Electronic resource]: Machine Learning for Mini-EUSO Telescope Data Analysis
б.г.
ISBN отсутствует
Автор: Bertaina, M.
38th International Cosmic Ray Conference (ICRC2023), Nagoya, Japan, 26 July - 3 August, 2023 [Electronic resource]: Machine Learning for Mini-EUSO Telescope Data Analysis
б.г.
ISBN отсутствует
Книга (аналит. описание)
Bertaina, M.
Machine Learning for Mini-EUSO Telescope Data Analysis / M.Bertaina, M.Zotov, D.Anzhiganov, D.Naumov, L.G.Tkachev, [a.o.] // 38th International Cosmic Ray Conference (ICRC2023), Nagoya, Japan, 26 July - 3 August, 2023 [Electronic resource]. – Trieste : SISSA, 2024. – P. 277. – URL: https://doi.org/10.22323/1.444.0277. – Bibliogr.: 11.
Neural networks as well as other methods of machine learning (ML) are known to be highly efficient in different classification tasks, including classification of images and videos. Mini- EUSO is a wide-field-of-view imaging telescope that operates onboard the International Space Station since 2019 collecting data on miscellaneous processes that take place in the atmosphere of Earth in the UV range. Here we briefly present our results on the development of ML-based approaches for recognition and classification of track-like signals in the Mini-EUSO data, among them meteors, space debris and signals the light curves and kinematics of which are similar to those expected from extensive air showers generated by ultra-high-energy cosmic rays. We show that even simple neural networks demonstrate impressive performance in solving these tasks. – (Proceedings of Science ; Vol. 444) .
ОИЯИ = ОИЯИ (JINR)2024
Спец.(статьи,препринты) = С 347 - Космические лучи
Спец.(статьи,препринты) = Ц 849 - Искусственный интеллект. Теория и практика
Спец.(статьи,препринты) = С 63 - Астрофизика$
Bertaina, M.
Machine Learning for Mini-EUSO Telescope Data Analysis / M.Bertaina, M.Zotov, D.Anzhiganov, D.Naumov, L.G.Tkachev, [a.o.] // 38th International Cosmic Ray Conference (ICRC2023), Nagoya, Japan, 26 July - 3 August, 2023 [Electronic resource]. – Trieste : SISSA, 2024. – P. 277. – URL: https://doi.org/10.22323/1.444.0277. – Bibliogr.: 11.
Neural networks as well as other methods of machine learning (ML) are known to be highly efficient in different classification tasks, including classification of images and videos. Mini- EUSO is a wide-field-of-view imaging telescope that operates onboard the International Space Station since 2019 collecting data on miscellaneous processes that take place in the atmosphere of Earth in the UV range. Here we briefly present our results on the development of ML-based approaches for recognition and classification of track-like signals in the Mini-EUSO data, among them meteors, space debris and signals the light curves and kinematics of which are similar to those expected from extensive air showers generated by ultra-high-energy cosmic rays. We show that even simple neural networks demonstrate impressive performance in solving these tasks. – (Proceedings of Science ; Vol. 444) .
ОИЯИ = ОИЯИ (JINR)2024
Спец.(статьи,препринты) = С 347 - Космические лучи
Спец.(статьи,препринты) = Ц 849 - Искусственный интеллект. Теория и практика
Спец.(статьи,препринты) = С 63 - Астрофизика$