Поиск :
Личный кабинет :
Электронный каталог: Arnquist, I. J. - Assay-Based Background Projection for the MAJORANA DEMONSTRATOR Using Monte Carlo Uncertainty Pro...
Arnquist, I. J. - Assay-Based Background Projection for the MAJORANA DEMONSTRATOR Using Monte Carlo Uncertainty Pro...
Статья
Автор: Arnquist, I. J.
Physical Review C [Electronic resource]: Assay-Based Background Projection for the MAJORANA DEMONSTRATOR Using Monte Carlo Uncertainty Pro...
б.г.
ISBN отсутствует
Автор: Arnquist, I. J.
Physical Review C [Electronic resource]: Assay-Based Background Projection for the MAJORANA DEMONSTRATOR Using Monte Carlo Uncertainty Pro...
б.г.
ISBN отсутствует
Статья
Arnquist, I.J.
Assay-Based Background Projection for the MAJORANA DEMONSTRATOR Using Monte Carlo Uncertainty Propagation / I.J.Arnquist, S.Vasilyev, [a.o.] // Physical Review C [Electronic resource]. – 2024. – Vol. 110, No. 5. – P. 055804. – URL: https://doi.org/10.1103/PhysRevC.110.055804. – Bibliogr.: 26.
The background index (BI) is an important quantity to project and calculate the half-life sensitivity of neutrinoless double-β decay (0νββ) experiments. An analysis framework is presented to calculate the BI using the specific activities, masses, and simulated efficiencies of an experiments components as distributions. This Bayesian framework includes a unified approach to combine specific activities from assay. Monte Carlo uncertainty propagation is used to build a BI distribution from the specific activity, mass, and efficiency distributions. This method is applied to the M AJORANA DEMONSTRATOR , which deployed arrays of high-purity Ge detectors enriched in 76 Ge to search for 0νββ. The original assay-based projection is requantified in the new framework, using the as-built geometry of the DEMONSTRATOR and additional assay information. While 47% higher than the original projection, the resulting BI of [8.95 ± 0.36] × 10&sup(−4) cts/(keV kg yr) from the &sup(232)Th and &sup(238)U decay chains does not account for the higher-than-expected BI observed by the DEMONSTRATOR . This method enables us to demonstrate the statistical incompatibility between the DEMONSTRATOR ’s observed background and the assay results.
ОИЯИ = ОИЯИ (JINR)2024
Спец.(статьи,препринты) = С 341.1б - Бета-распад и К-захват. Схемы распада и спектры
Спец.(статьи,препринты) = С 17 б - Численное интегрирование. Методы Монте-Карло
Бюллетени = 1/025
Arnquist, I.J.
Assay-Based Background Projection for the MAJORANA DEMONSTRATOR Using Monte Carlo Uncertainty Propagation / I.J.Arnquist, S.Vasilyev, [a.o.] // Physical Review C [Electronic resource]. – 2024. – Vol. 110, No. 5. – P. 055804. – URL: https://doi.org/10.1103/PhysRevC.110.055804. – Bibliogr.: 26.
The background index (BI) is an important quantity to project and calculate the half-life sensitivity of neutrinoless double-β decay (0νββ) experiments. An analysis framework is presented to calculate the BI using the specific activities, masses, and simulated efficiencies of an experiments components as distributions. This Bayesian framework includes a unified approach to combine specific activities from assay. Monte Carlo uncertainty propagation is used to build a BI distribution from the specific activity, mass, and efficiency distributions. This method is applied to the M AJORANA DEMONSTRATOR , which deployed arrays of high-purity Ge detectors enriched in 76 Ge to search for 0νββ. The original assay-based projection is requantified in the new framework, using the as-built geometry of the DEMONSTRATOR and additional assay information. While 47% higher than the original projection, the resulting BI of [8.95 ± 0.36] × 10&sup(−4) cts/(keV kg yr) from the &sup(232)Th and &sup(238)U decay chains does not account for the higher-than-expected BI observed by the DEMONSTRATOR . This method enables us to demonstrate the statistical incompatibility between the DEMONSTRATOR ’s observed background and the assay results.
ОИЯИ = ОИЯИ (JINR)2024
Спец.(статьи,препринты) = С 341.1б - Бета-распад и К-захват. Схемы распада и спектры
Спец.(статьи,препринты) = С 17 б - Численное интегрирование. Методы Монте-Карло
Бюллетени = 1/025