Поиск :
Личный кабинет :
Электронный каталог: Alexeeva, N. V. - The Energy-Frequency Diagram of the (1+1)-Dimensional *F*4 Oscillon
Alexeeva, N. V. - The Energy-Frequency Diagram of the (1+1)-Dimensional *F*4 Oscillon
Статья
Автор: Alexeeva, N. V.
Journal of High Energy Physics [Electronic resource]: The Energy-Frequency Diagram of the (1+1)-Dimensional *F*4 Oscillon
б.г.
ISBN отсутствует
Автор: Alexeeva, N. V.
Journal of High Energy Physics [Electronic resource]: The Energy-Frequency Diagram of the (1+1)-Dimensional *F*4 Oscillon
б.г.
ISBN отсутствует
Статья
Alexeeva, N.V.
The Energy-Frequency Diagram of the (1+1)-Dimensional *F*4 Oscillon / N.V.Alexeeva, I.V.Barashenkov, A.Dika, R.De Sousa // Journal of High Energy Physics [Electronic resource]. – 2024. – Vol. 2024, No. 10. – P. 136. – URL: https://doi.org/10.1007/JHEP10(2024)136. – Bibliogr.: 136.
Two different methods are used to study the existence and stability of the (1+1)-dimensional Φ*4 oscillon. The variational technique approximates it by a periodic function with a set of adiabatically changing parameters. An alternative approach treats oscillons as standing waves in a finite-size box; these are sought as solutions of a boundary-value problem on a two-dimensional domain. The numerical analysis reveals that the standing wave’s energy-frequency diagram is fragmented into disjoint segments with ω&sub(n+1) < ω < ω&sub(n), where ωn = ω&sub(0)/(n + 1), n = 0, 1, 2, . ., and ω&sub(0) is the endpoint of the continuous spectrum (mass threshold of the model). The variational approximation involving the first, zeroth and second harmonic components provides an accurate description of the oscillon with the frequency in (ω&sub(1), ω&sub(0)), but breaks down as ω falls out of that interval.
ОИЯИ = ОИЯИ (JINR)2024
Спец.(статьи,препринты) = С 324.1 - Вторично- квантованные локальные теории взаимодействующих полей$
Бюллетени = 50/024
Alexeeva, N.V.
The Energy-Frequency Diagram of the (1+1)-Dimensional *F*4 Oscillon / N.V.Alexeeva, I.V.Barashenkov, A.Dika, R.De Sousa // Journal of High Energy Physics [Electronic resource]. – 2024. – Vol. 2024, No. 10. – P. 136. – URL: https://doi.org/10.1007/JHEP10(2024)136. – Bibliogr.: 136.
Two different methods are used to study the existence and stability of the (1+1)-dimensional Φ*4 oscillon. The variational technique approximates it by a periodic function with a set of adiabatically changing parameters. An alternative approach treats oscillons as standing waves in a finite-size box; these are sought as solutions of a boundary-value problem on a two-dimensional domain. The numerical analysis reveals that the standing wave’s energy-frequency diagram is fragmented into disjoint segments with ω&sub(n+1) < ω < ω&sub(n), where ωn = ω&sub(0)/(n + 1), n = 0, 1, 2, . ., and ω&sub(0) is the endpoint of the continuous spectrum (mass threshold of the model). The variational approximation involving the first, zeroth and second harmonic components provides an accurate description of the oscillon with the frequency in (ω&sub(1), ω&sub(0)), but breaks down as ω falls out of that interval.
ОИЯИ = ОИЯИ (JINR)2024
Спец.(статьи,препринты) = С 324.1 - Вторично- квантованные локальные теории взаимодействующих полей$
Бюллетени = 50/024