Поиск :
Личный кабинет :
Электронный каталог: Friesen, A. V. - Calculation of a Multidimensional Integral with a Singularity by Dividing the Integration Domain ...
Friesen, A. V. - Calculation of a Multidimensional Integral with a Singularity by Dividing the Integration Domain ...
Статья
Автор: Friesen, A. V.
Физика элементарных частиц и атомного ядра. Письма: Calculation of a Multidimensional Integral with a Singularity by Dividing the Integration Domain ... : XXVII International Scientific Conference of Young Scientists and Specialists (AYSS-2023), Dubna, Russia, October 30 – November 3, 2023 : Mate...
б.г.
ISBN отсутствует
Автор: Friesen, A. V.
Физика элементарных частиц и атомного ядра. Письма: Calculation of a Multidimensional Integral with a Singularity by Dividing the Integration Domain ... : XXVII International Scientific Conference of Young Scientists and Specialists (AYSS-2023), Dubna, Russia, October 30 – November 3, 2023 : Mate...
б.г.
ISBN отсутствует
Статья
Friesen, A.V.
Calculation of a Multidimensional Integral with a Singularity by Dividing the Integration Domain into Subsegments : XXVII International Scientific Conference of Young Scientists and Specialists (AYSS-2023), Dubna, Russia, October 30 – November 3, 2023 : Materials / A.V.Friesen, D.Goderidze, Yu.L.Kalinovsky // Физика элементарных частиц и атомного ядра. Письма. – 2024. – Т. 21, № 4. – C. 795. – URL: http://www1.jinr.ru/Pepan_letters/panl_2024_4/62_Friesen_ann.pdf.
Calculating multidimensional integrals with a singularity of type ∫ . . ∫ f (x)/(x − c) is not a simple task. The methods used to calculate such an integral must effectively bypass the singularity, minimizing the error. An algorithm is presented which, in the process of calculating the integral, analyzes the area of integration, dividing it into subsegments. Subsegments containing a singularity, as well as those located close to the singularity, are excluded during the final calculation of the integral. Integrals final calulation is carried out using the Monte Carlo integration method. The algorithm allows calculating both one-dimensional and multidimensional integrals
Спец.(статьи,препринты) = С 17 б - Численное интегрирование. Методы Монте-Карло
ОИЯИ = ОИЯИ (JINR)2024
Friesen, A.V.
Calculation of a Multidimensional Integral with a Singularity by Dividing the Integration Domain into Subsegments : XXVII International Scientific Conference of Young Scientists and Specialists (AYSS-2023), Dubna, Russia, October 30 – November 3, 2023 : Materials / A.V.Friesen, D.Goderidze, Yu.L.Kalinovsky // Физика элементарных частиц и атомного ядра. Письма. – 2024. – Т. 21, № 4. – C. 795. – URL: http://www1.jinr.ru/Pepan_letters/panl_2024_4/62_Friesen_ann.pdf.
Calculating multidimensional integrals with a singularity of type ∫ . . ∫ f (x)/(x − c) is not a simple task. The methods used to calculate such an integral must effectively bypass the singularity, minimizing the error. An algorithm is presented which, in the process of calculating the integral, analyzes the area of integration, dividing it into subsegments. Subsegments containing a singularity, as well as those located close to the singularity, are excluded during the final calculation of the integral. Integrals final calulation is carried out using the Monte Carlo integration method. The algorithm allows calculating both one-dimensional and multidimensional integrals
Спец.(статьи,препринты) = С 17 б - Численное интегрирование. Методы Монте-Карло
ОИЯИ = ОИЯИ (JINR)2024