Поиск :
Личный кабинет :
Электронный каталог: Sarkissian, G. A. - Complex and Rational Hypergeometric Functions on Root Systems
Sarkissian, G. A. - Complex and Rational Hypergeometric Functions on Root Systems
Статья
Автор: Sarkissian, G. A.
Journal of Geometry and Physics [Electronic Resource]: Complex and Rational Hypergeometric Functions on Root Systems
б.г.
ISBN отсутствует
Автор: Sarkissian, G. A.
Journal of Geometry and Physics [Electronic Resource]: Complex and Rational Hypergeometric Functions on Root Systems
б.г.
ISBN отсутствует
Статья
Sarkissian, G.A.
Complex and Rational Hypergeometric Functions on Root Systems / G.A.Sarkissian, V.P.Spiridonov // Journal of Geometry and Physics [Electronic Resource]. – 2024. – Vol. 203. – P. 105274. – URL: https://doi.org/10.1016/j.geomphys.2024.105274. – Bibliogr.: 38.
We consider some new limits for the elliptic hypergeometric integrals on root systems. After the degeneration of elliptic beta integrals of type I and type II for root systems A&sub(n) and C&sub(n) to the hyperbolic hypergeometric integrals, we apply the limit *w&sub(1) *> −*w&sub(2) for their quasiperiods (corresponding to b *> i in the two-dimensional conformal field theory) and obtain complex beta integrals in the Mellin–Barnes representation admitting exact evaluation. Considering type I elliptic hypergeometric integrals of a higher order obeying nontrivial symmetry transformations, we derive their descendants to the level of complex hypergeometric functions and prove the Derkachov–Manashov conjectures for functions emerging in the theory of non-compact spin chains. We describe also symmetry transformations for a type II complex hypergeometric function on the C&sub(n)-root system related to the recently derived generalized complex Selberg integral. For some hyperbolic beta integrals we consider a special limit *w&sub(1) *> *w&sub(2) (or b *> 1) and obtain new hypergeometric identities for sums of integrals of rational functions.
Спец.(статьи,препринты) = С 132 - Математический анализ
ОИЯИ = ОИЯИ (JINR)2024
Ключевых слов = 40/024
Sarkissian, G.A.
Complex and Rational Hypergeometric Functions on Root Systems / G.A.Sarkissian, V.P.Spiridonov // Journal of Geometry and Physics [Electronic Resource]. – 2024. – Vol. 203. – P. 105274. – URL: https://doi.org/10.1016/j.geomphys.2024.105274. – Bibliogr.: 38.
We consider some new limits for the elliptic hypergeometric integrals on root systems. After the degeneration of elliptic beta integrals of type I and type II for root systems A&sub(n) and C&sub(n) to the hyperbolic hypergeometric integrals, we apply the limit *w&sub(1) *> −*w&sub(2) for their quasiperiods (corresponding to b *> i in the two-dimensional conformal field theory) and obtain complex beta integrals in the Mellin–Barnes representation admitting exact evaluation. Considering type I elliptic hypergeometric integrals of a higher order obeying nontrivial symmetry transformations, we derive their descendants to the level of complex hypergeometric functions and prove the Derkachov–Manashov conjectures for functions emerging in the theory of non-compact spin chains. We describe also symmetry transformations for a type II complex hypergeometric function on the C&sub(n)-root system related to the recently derived generalized complex Selberg integral. For some hyperbolic beta integrals we consider a special limit *w&sub(1) *> *w&sub(2) (or b *> 1) and obtain new hypergeometric identities for sums of integrals of rational functions.
Спец.(статьи,препринты) = С 132 - Математический анализ
ОИЯИ = ОИЯИ (JINR)2024
Ключевых слов = 40/024