Поиск :
Личный кабинет :
Электронный каталог: Hnatic, M. - Smoluchowski Approximation: Analysis of Reaction-Diffusion Systems with Long-Range Spreading
Hnatic, M. - Smoluchowski Approximation: Analysis of Reaction-Diffusion Systems with Long-Range Spreading
Книга (аналит. описание)
Автор: Hnatic, M.
15th Chaotic Modeling and Simulation International Conference [Electronic resource]: Smoluchowski Approximation: Analysis of Reaction-Diffusion Systems with Long-Range Spreading
б.г.
ISBN отсутствует
Автор: Hnatic, M.
15th Chaotic Modeling and Simulation International Conference [Electronic resource]: Smoluchowski Approximation: Analysis of Reaction-Diffusion Systems with Long-Range Spreading
б.г.
ISBN отсутствует
Книга (аналит. описание)
Hnatic, M.
Smoluchowski Approximation: Analysis of Reaction-Diffusion Systems with Long-Range Spreading / M.Hnatic, M.Kecer, T.Lucivjansky // 15th Chaotic Modeling and Simulation International Conference [Electronic resource] / Ed.: C.H.Skiadas, Y.Dimotikalis. – Cham : Springer, 2023. – P. 99-110. – URL: https://doi.org/10.1007/978-3-031-27082-6_9. – Bibliogr.: 22.
We develop a generalization of Smoluchowski approximation for reaction-diffusion systems in presence of long-range spreading. Spreading behavior is modeled by means of Lévy random processes using Riemann–Liouville fractional derivative. Theoretical approach is based on an quasi-static approximation for one-dimensional systems and we apply it on two model systems, binary annihilation process , and a coupled system . Final analytical expressions for universal decay exponents are compared with results obtained by simulations. – (Springer Proceedings in Complexity) .
ОИЯИ = ОИЯИ (JINR)2023
Спец.(статьи,препринты) = С 325.4 - Нелинейные системы. Хаос и синергетика. Фракталы$
Hnatic, M.
Smoluchowski Approximation: Analysis of Reaction-Diffusion Systems with Long-Range Spreading / M.Hnatic, M.Kecer, T.Lucivjansky // 15th Chaotic Modeling and Simulation International Conference [Electronic resource] / Ed.: C.H.Skiadas, Y.Dimotikalis. – Cham : Springer, 2023. – P. 99-110. – URL: https://doi.org/10.1007/978-3-031-27082-6_9. – Bibliogr.: 22.
We develop a generalization of Smoluchowski approximation for reaction-diffusion systems in presence of long-range spreading. Spreading behavior is modeled by means of Lévy random processes using Riemann–Liouville fractional derivative. Theoretical approach is based on an quasi-static approximation for one-dimensional systems and we apply it on two model systems, binary annihilation process , and a coupled system . Final analytical expressions for universal decay exponents are compared with results obtained by simulations. – (Springer Proceedings in Complexity) .
ОИЯИ = ОИЯИ (JINR)2023
Спец.(статьи,препринты) = С 325.4 - Нелинейные системы. Хаос и синергетика. Фракталы$