Поиск :
Личный кабинет :
Электронный каталог: Lakaev, S. N. - Two-Fermion Lattice Hamiltonian with First and Second Nearest-Neighboring-Site Interactions
Lakaev, S. N. - Two-Fermion Lattice Hamiltonian with First and Second Nearest-Neighboring-Site Interactions
Статья
Автор: Lakaev, S. N.
Journal of Physics A: Mathematical and Theoretical [Electronic resource]: Two-Fermion Lattice Hamiltonian with First and Second Nearest-Neighboring-Site Interactions
б.г.
ISBN отсутствует
Автор: Lakaev, S. N.
Journal of Physics A: Mathematical and Theoretical [Electronic resource]: Two-Fermion Lattice Hamiltonian with First and Second Nearest-Neighboring-Site Interactions
б.г.
ISBN отсутствует
Статья
Lakaev, S.N.
Two-Fermion Lattice Hamiltonian with First and Second Nearest-Neighboring-Site Interactions / S.N.Lakaev, A.K.Motovilov, S.Kh.Abdukhakimov // Journal of Physics A: Mathematical and Theoretical [Electronic resource]. – 2023. – Vol.56, No.31. – P.315202. – URL: https://doi.org/10.1088/1751-8121/ace4a6.
We study the Schrödinger operators H&sub(*l*m)(K), with K € T*2 the fixed quasimomentum of the partcles pair, associated with a system of two identical fermions on the two-dimensional lattice with first and second nearest-neighboring-site interactions of magnitudes *l € R and *m € R, respectively. We establish a partition of the (*l, *m) -plane so that in each its connected component, the Schrödinger operator H&sub(*l*m)(0) has a definite (fixed) number of eigenvalues, which are situated below the bottom of the essential spectrum and above its top. Moreover, we establish a sharp lower bound for the number of isolated eigenvalues H&sub(*l*m)(K) of in each connected component.
ОИЯИ = ОИЯИ (JINR)2023
Спец.(статьи,препринты) = С 326 - Квантовая теория систем из многих частиц. Квантовая статистика
Бюллетени = 7/024
Lakaev, S.N.
Two-Fermion Lattice Hamiltonian with First and Second Nearest-Neighboring-Site Interactions / S.N.Lakaev, A.K.Motovilov, S.Kh.Abdukhakimov // Journal of Physics A: Mathematical and Theoretical [Electronic resource]. – 2023. – Vol.56, No.31. – P.315202. – URL: https://doi.org/10.1088/1751-8121/ace4a6.
We study the Schrödinger operators H&sub(*l*m)(K), with K € T*2 the fixed quasimomentum of the partcles pair, associated with a system of two identical fermions on the two-dimensional lattice with first and second nearest-neighboring-site interactions of magnitudes *l € R and *m € R, respectively. We establish a partition of the (*l, *m) -plane so that in each its connected component, the Schrödinger operator H&sub(*l*m)(0) has a definite (fixed) number of eigenvalues, which are situated below the bottom of the essential spectrum and above its top. Moreover, we establish a sharp lower bound for the number of isolated eigenvalues H&sub(*l*m)(K) of in each connected component.
ОИЯИ = ОИЯИ (JINR)2023
Спец.(статьи,препринты) = С 326 - Квантовая теория систем из многих частиц. Квантовая статистика
Бюллетени = 7/024