Поиск :
Личный кабинет :
Электронный каталог: Barashenkov, I. V. - Integrability and Trajectory Confinement in PT-Symmetric Waveguide Arrays
Barashenkov, I. V. - Integrability and Trajectory Confinement in PT-Symmetric Waveguide Arrays
Статья
Автор: Barashenkov, I. V.
Journal of Physics A: Mathematical and Theoretical [Electronic resource]: Integrability and Trajectory Confinement in PT-Symmetric Waveguide Arrays
б.г.
ISBN отсутствует
Автор: Barashenkov, I. V.
Journal of Physics A: Mathematical and Theoretical [Electronic resource]: Integrability and Trajectory Confinement in PT-Symmetric Waveguide Arrays
б.г.
ISBN отсутствует
Статья
Barashenkov, I.V.
Integrability and Trajectory Confinement in PT-Symmetric Waveguide Arrays / I.V.Barashenkov, F.Smuts, A.Chernyavsky // Journal of Physics A: Mathematical and Theoretical [Electronic resource]. – 2023. – Vol.56, No.16. – P.165701. – URL: https://doi.org/10.1088/1751-8121/acc3ce. – Bibliogr.:23.
We consider $mathcal{PT}$-symmetric ring-like arrays of optical waveguides with purely nonlinear gain and loss. Regardless of the value of the gain–loss coefficient, these systems are protected from spontaneous $mathcal{PT}$-symmetry breaking. If the nonhermitian part of the array matrix has cross-compensating structure, the total power in such a system remains bounded—or even constant—at all times. We identify two-, three-, and four-waveguide arrays with cross-compensatory nonlinear gain and loss that constitute completely integrable Hamiltonian systems.
ОИЯИ = ОИЯИ (JINR)2023
Спец.(статьи,препринты) = С 326.4 - Коллективные эффекты. Сверхизлучение. Квантовая оптика. Эффект Холла
Спец.(статьи,препринты) = С 37 - Оптика$
Бюллетени = 1/023
Barashenkov, I.V.
Integrability and Trajectory Confinement in PT-Symmetric Waveguide Arrays / I.V.Barashenkov, F.Smuts, A.Chernyavsky // Journal of Physics A: Mathematical and Theoretical [Electronic resource]. – 2023. – Vol.56, No.16. – P.165701. – URL: https://doi.org/10.1088/1751-8121/acc3ce. – Bibliogr.:23.
We consider $mathcal{PT}$-symmetric ring-like arrays of optical waveguides with purely nonlinear gain and loss. Regardless of the value of the gain–loss coefficient, these systems are protected from spontaneous $mathcal{PT}$-symmetry breaking. If the nonhermitian part of the array matrix has cross-compensating structure, the total power in such a system remains bounded—or even constant—at all times. We identify two-, three-, and four-waveguide arrays with cross-compensatory nonlinear gain and loss that constitute completely integrable Hamiltonian systems.
ОИЯИ = ОИЯИ (JINR)2023
Спец.(статьи,препринты) = С 326.4 - Коллективные эффекты. Сверхизлучение. Квантовая оптика. Эффект Холла
Спец.(статьи,препринты) = С 37 - Оптика$
Бюллетени = 1/023